

Multiple Lines of Evidence Reveal Rapid, Seasonal Watershed Responses to Enhanced Weathering

Fengchao Sun

fengchao.sun@yale.edu

School of the Environment, Yale University

Robert Rioux

School of the Environment, Yale University

Tim Suhrhoff

Department of Earth and Planetary Sciences, Yale University

Wyatt Tatge

School of the Environment, Yale University

Boriana Kalderon-Asael

Yale University <https://orcid.org/0000-0002-5442-8219>

Quinn Zacharias

School of the Environment, Yale University

William Miller-Brown

School of the Environment, Yale University

Aaron MacDonald

School of the Environment, Yale University

Esmeralda Garcia

School of the Environment, Yale University

Jamie Shanley

USGS

Peter Raymond

Yale University <https://orcid.org/0000-0002-8564-7860>

Noah Planavsky

Yale University <https://orcid.org/0000-0001-5849-8508>

James Saiers

Yale University

Article

Keywords:

Posted Date: December 2nd, 2025

DOI: <https://doi.org/10.21203/rs.3.rs-8224816/v1>

License: This work is licensed under a Creative Commons Attribution 4.0 International License.

[Read Full License](#)

Additional Declarations: There is **NO** Competing Interest.

1 **Multiple Lines of Evidence Reveal Rapid, Seasonal Watershed Responses to Enhanced
2 Weathering**

3 Fengchao Sun^{1,2*}, Robert A. Rioux^{1,2}, Tim Jesper Suhrhoff^{2,3}, Wyatt Tatge^{1,2}, Boriana Kalderon-Asael^{2,3},
4 Quinn Zacharias^{1,2}, William A. Miller-Brown^{1,2}, Aaron A. MacDonald^{1,2,4}, Esmeralda Garcia^{1,2,5}, James B.
5 Shanley⁶, Peter A. Raymond^{1,2}, Noah J. Planavsky^{2,3}, James E. Saiers^{1,2}

6 ¹School of the Environment, Yale University, New Haven, CT, 06511, USA

7 ² Yale Center for Natural Carbon Capture, Yale University, New Haven, CT, 06511, USA

8 ³ Department of Earth and Planetary Sciences, Yale University, New Haven, CT, 06511, USA

9 ⁴ Earth and Environmental Science Department, University of Illinois-Chicago, Chicago, IL, 60607, USA

10 ⁵ McCormick School of Engineering, Northwestern University, Evanston, IL, 60208, USA

11 ⁶ U.S. Geological Survey, New England Water Science Center, Montpelier, VT, 05602, USA

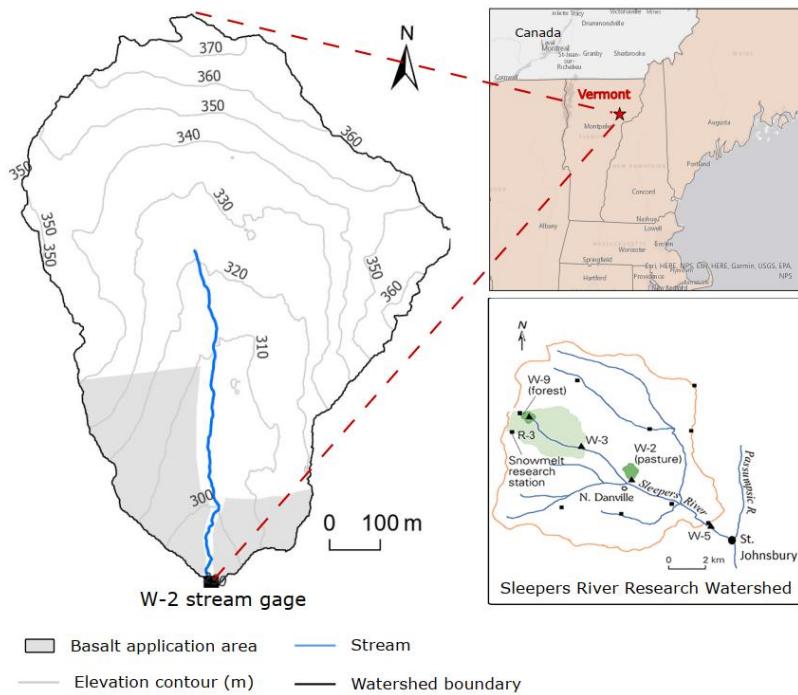
12 **Abstract**

13 Enhanced rock weathering (ERW) is a natural carbon dioxide removal (CDR) approach that captures CO₂
14 by accelerating silicate weathering using crushed rocks. A major question on the efficacy of ERW is how
15 fast and efficient it is at transporting the products of weathering to drainage networks, and ultimately the
16 ocean. Using a novel whole watershed experiment, we report multiple lines of evidence of rapid and
17 pronounced streamwater chemistry responses within weeks of basalt application (20 t ha⁻¹) to 15% of a 59-
18 ha temperate, headwater catchment. Lines of evidence include an immediate streamwater alkalinity increase
19 of more than 550 μeq L⁻¹, a shift in elemental ratios to silicate endmembers, and a concomitant change in
20 silicon and lithium chemistry reflective of basalt weathering. Finally, our difference-in-differences analysis
21 revealed strong, recurring seasonal ERW treatment effects. ERW contributed 7–17% of observed alkalinity
22 in summer and fall, but much less in winter and spring, reflecting the critical role of the near-surface and
23 stream-proximal zones in alkalinity export, and the effects of precipitation and temperature on ERW rates.
24 Over two years, 9.5–11% of the theoretical CDR potential was exported from the watershed in the form of
25 alkalinity, with an average rate of 34.72 t CO₂ km⁻² yr⁻¹. This work demonstrates rapid, seasonal watershed
26 responses to ERW and its promise for CDR monitoring, reporting, and verification (MRV), and highlights
27 how climate and hydrological variability set fundamental boundaries on ERW effectiveness across
28 landscapes.

29 **Introduction**

30 Anthropogenic CO₂ emissions are the primary driver of climate change and ocean acidification, profoundly
31 affecting both terrestrial and marine climates and ecosystems.^{1,2} To achieve the Paris Agreement of limiting
32 global warming to less than 2 °C, large-scale carbon dioxide removal (CDR) will be necessary.³ Terrestrial
33 Enhanced Rock Weathering (ERW) is a promising CDR approach that involves spreading powdered silicate
34 rocks (e.g., basalt) over agricultural and other lands to accelerate chemical weathering reactions that convert
35 atmospheric CO₂ to alkalinity (primarily HCO₃⁻) and release base cations.^{4,5} These weathering products
36 may be retained within the watershed or exported with soil waters and groundwaters to streams and rivers
37 that drain into the ocean, where storage lifetimes may exceed tens of millennia.^{6,7} Recent theoretical
38 assessments indicate that ERW implemented on global croplands could sequester 0.5 to 2 Gt CO₂ yr⁻¹ at
39 costs comparable to other CDR strategies, which become more competitive when agriculture co-benefits
40 from improved soil health are considered.^{8,9,10} Despite the growing interest in ERW, uncertainty in its
41 practical potential remains and is underpinned by a scarcity of both observations and demonstrations of
42 approaches suitable for quantifying applied-silicate weathering at the field scale.

43 Watersheds represent a critical, yet overlooked, unit of analysis for evaluating the efficacy of ERW
44 as a scalable CDR strategy. Watersheds integrate the effects of physicochemical heterogeneity and transient,
45 non-uniform transport processes on the retention, transformation, and export of weathering products.¹¹ Most
46 ERW estimates rely on feedstock dissolution rates determined in laboratories or in near-surface soils from
47 plot-scale or farm-field experiments.^{12,13,14} These studies do not capture the suite of watershed processes
48 beneath shallow soil horizons that can alter the timing and magnitude of CDR. For example, ion exchange
49 may delay alkalinity generation as base cations released during silicate dissolution displace adsorbed
50 protons before contributing alkalinity to porewaters,¹⁵ while secondary-clay formation and carbonate
51 precipitation may sequester feedstock weathering products, effectively reducing net CDR.^{7,16,17} Moreover,
52 the travel times of rainfall and snowmelt through the watershed will lead to hydrologic lags between

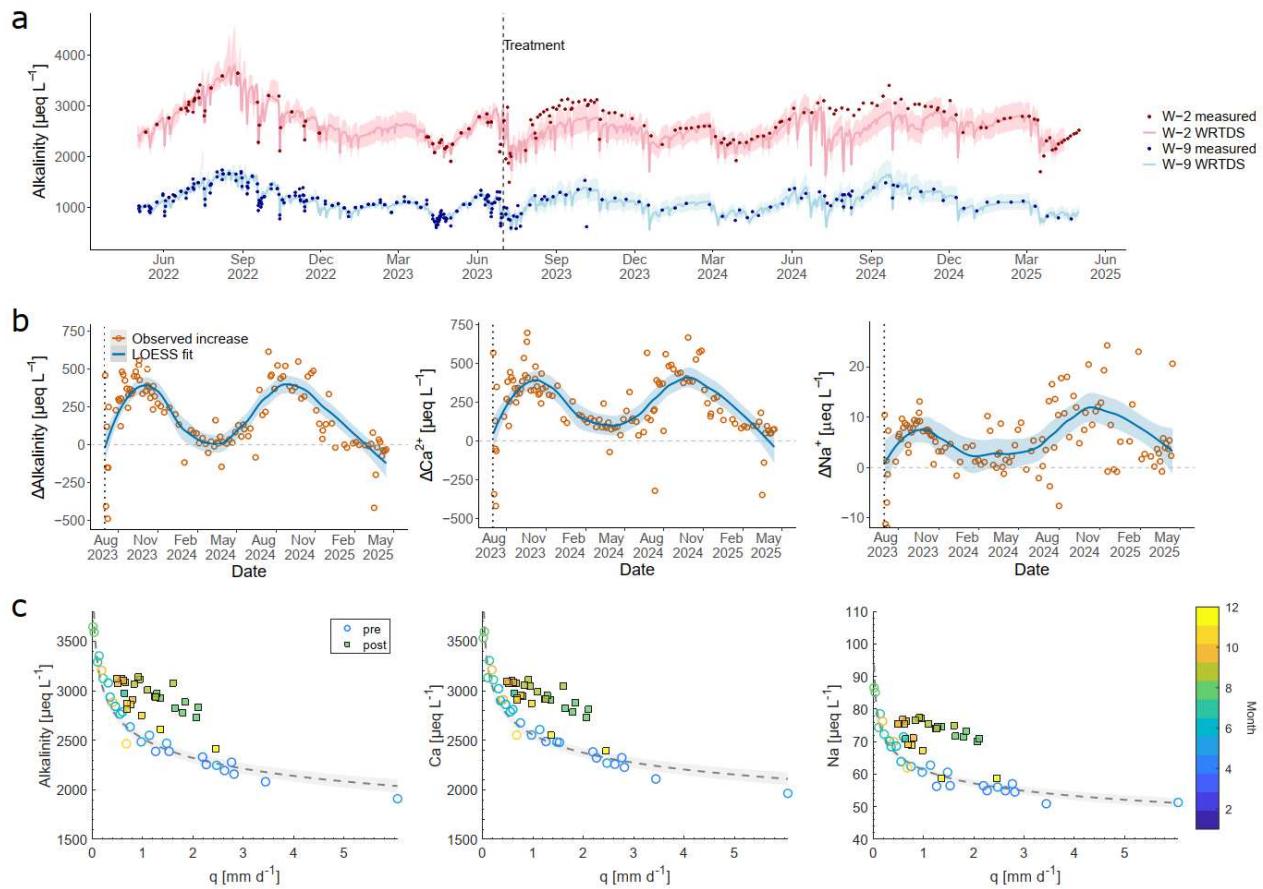

53 feedstock dissolution and the expression of alkalinity in the streamwater signal, a largely unexplored effect
54 with important implications for CDR quantification.

55 The streamwater chemical response to ERW is likely to be dynamic, shaped by factors that vary at
56 seasonal and sub-seasonal time scales. Seasonal changes in temperature within temperate watersheds
57 hosting ERW deployments will affect weathering rates both abiotically and biotically (through effects on
58 soil pCO_2),^{18, 19} while variations in precipitation will modulate watershed wetness and flow path
59 connectivity that, in turn, govern catchment-water residence times and hence the extent of water-feedstock
60 interactions.²⁰ An understanding of how temperature-precipitation interactions influence temporal variation
61 in ERW contributions to streamwater alkalinity is essential to informing ERW monitoring schemes. It is
62 also crucial to evaluate how downstream processes, such as CO_2 outgassing and carbonate precipitation,
63 will further affect the carbon balance. Yet, the ways these seasonal processes regulate alkalinity generation
64 and export at the watershed scale are largely unknown.

65 Here we present multiple lines of evidence demonstrating rapid, seasonal watershed responses from
66 ERW, using high-resolution streamwater chemistry data from a 59-ha hay- and pasture-dominated
67 headwater catchment (W-2; average slope $\sim 7.3^\circ$) within the Sleepers River Research Watershed, Vermont,
68 USA (Fig. 1). Following a one-year baseline monitoring period, we applied Pioneer Valley Basalt powder
69 (hereafter “basalt”) in June 2023 over 8.9 ha of the southern portion of the catchment (15% of the total
70 catchment area) at a rate of 20 t ha^{-1} . We isolated the basalt-weathering signal from background water
71 chemistry by analyzing streamwater concentration–discharge ($C-Q$) relations before and after basalt
72 application and by comparing streamwater observations to a no-basalt counterfactual estimated from
73 WRTDS (Weighted Regressions on Time, Discharge, and Season).^{21, 22} We then employed a Generalized
74 Additive Model coupled with a Difference-in-Differences (GAM-DiD) approach²³ that leveraged
75 observations from a nearby reference watershed (W-9) to quantify seasonal dynamics in the streamwater
76 export of basalt-derived alkalinity, base cations and associated CDR rates. Additionally, we applied a novel
77 endmember mixing analysis to evaluate the effects of basalt treatment on seasonal shifts in weathering-

78 product concentrations within quick-flow and slow-flow pathways that transmit solutes to the stream. This
79 watershed-scale ERW study illuminates how streamwater chemistry responds to the deployment of silicate
80 feedstock and introduces a transferable framework for evaluating the seasonal dynamics of ERW-
81 attributable CO₂ removal.

82


83

84 Figure 1. Map of the W-2 watershed study site and basalt application area (grey area) within the Sleepers River
85 Research Watershed (SRRW) in Vermont, USA. The lower inset shows the position of W-2 relative to the W-9
86 reference watershed in SRRW (modified from Shanley et al.²⁴).

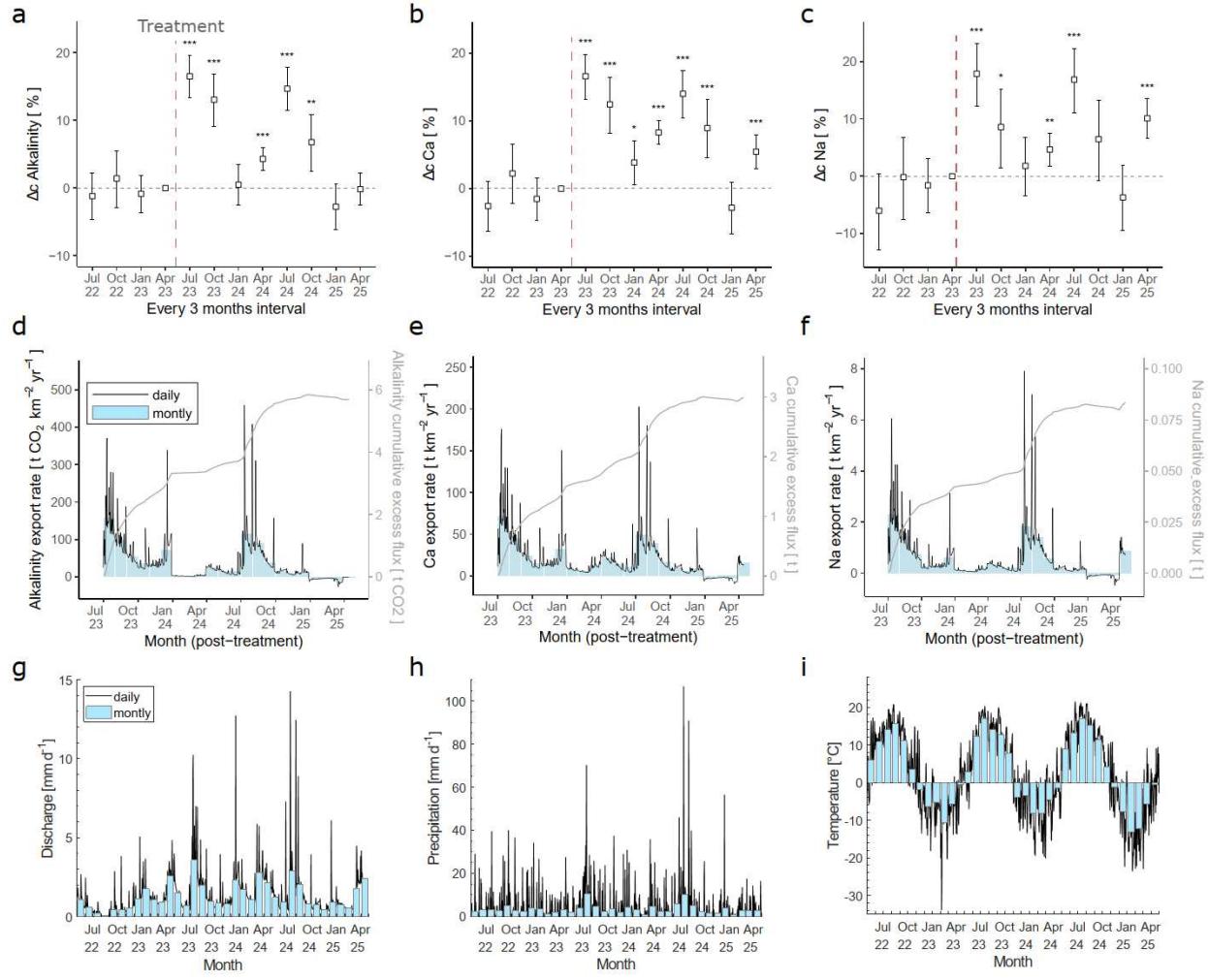
87 **Rapid and pronounced streamwater chemistry responses to watershed-scale ERW**

88 Streamwater alkalinity and base cation concentrations in the W-2 stream responded within one month of
89 the basalt application and exhibited sustained elevation relative to counterfactual WRTDS estimates from
90 July to November 2023 (Fig. 2a). In September 2023, measured alkalinity and Ca²⁺ concentrations exceeded
91 counterfactual estimates by more than 550 $\mu\text{eq L}^{-1}$ (Fig. 2b), while measured Mg²⁺ and Na⁺ concentrations
92 exhibited smaller increases (< 35 $\mu\text{eq L}^{-1}$) relative to the counterfactual (Supplementary Fig. 1). The

93 absence of similar responses in the W-9 reference watershed underscores that the observed concentration
 94 increases in W-2 stream were a direct result of basalt treatment (Fig. 2a, Supplementary Fig. 1). The basalt
 95 treatment also affected streamwater concentration-discharge (C - Q) relations, weakening the pronounced
 96 pattern of dilution with increasing flow observed during the baseline (pre-basalt) period for both alkalinity
 97 and base cations (Fig. 2c, Supplementary Fig. 2). In addition to concentration increases, elemental ratios of
 98 Ca/Na, HCO_3^- /Na, Mg/Na, and Sr/Na shifted toward silicate-weathering endmembers following basalt
 99 application (Supplementary Fig. 3), indicating a decline in the relative contribution of carbonate weathering
 100 that dominated streamwater composition²⁵ prior to basalt application.

101
 102 Figure 2. Streamwater concentration changes before and after basalt application. a, Observed and estimated
 103 concentrations of alkalinity at W-2 (treatment watershed) and W-9 streams (reference watershed) from May 2022 to
 104 April 2025, respectively. The black dashed line separates the pre- and post-basalt application periods. The red and
 105 blue lines denote WRTDS-estimated concentrations with shading representing 95% confidence intervals of the

106 estimates. b, Streamwater concentration changes after basalt application, indicated by the differences between
107 observed concentrations and WRTDS-estimated concentrations for the no-basalt counterfactual (orange circles). Blue
108 lines with shaded areas represent LOESS (Locally Estimated Scatterplot Smoothing) fits with 95% confidence
109 intervals. c, Streamwater concentration-discharge (C - Q) relations at W-2 before basalt application (open circles) and
110 during the first six months after basalt application (solid squares). Data were colored by month of year. Pre-application
111 C - Q data were fitted using a power-law model (grey dashed line) with 95% confidence interval (grey shade). q
112 represents the instantaneous discharge at the time of sample collection.

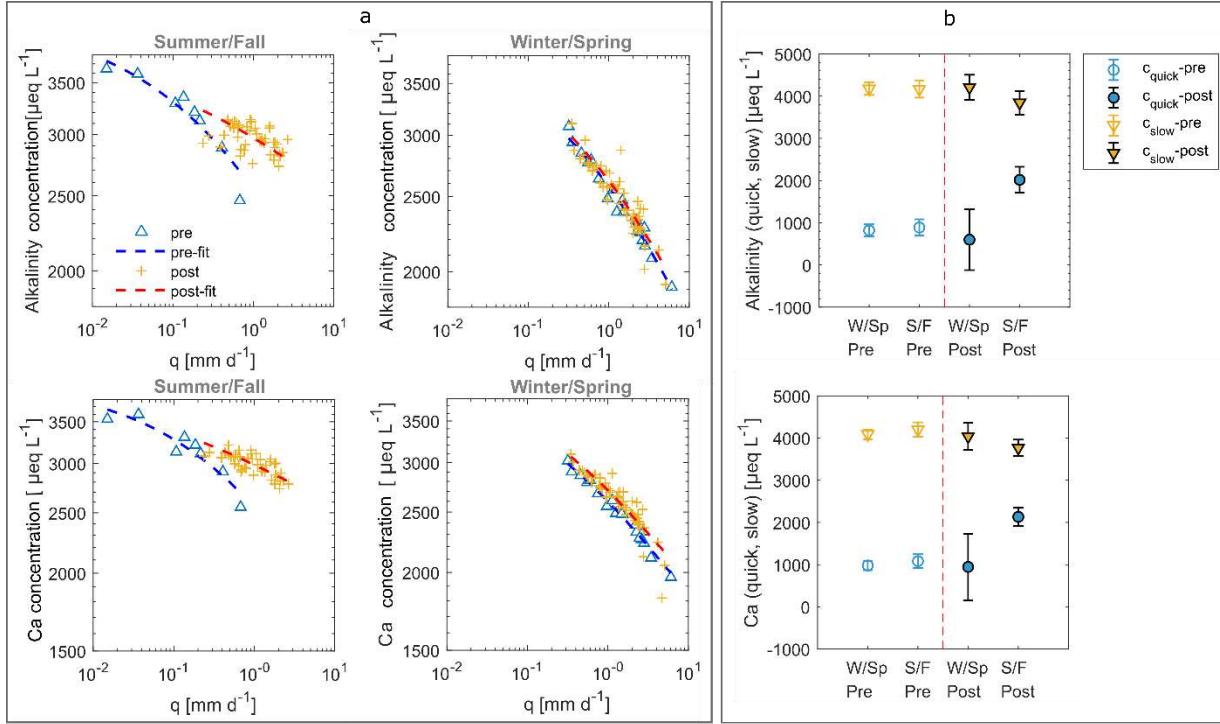

113 The post-application enrichment of concentrations of trace metals and silicon provides further
114 evidence for the rapid transport of basalt weathering products to the stream (Supplementary Fig. 2).
115 Concentration increases of silicon and lithium, which are both much more abundant in basalt than
116 carbonates,^{26,27} mirrored the increases in alkalinity and base cations. Moreover, $\delta^7\text{Li}$ values declined from
117 an average of $19.0 \pm 1\text{‰}$ during the pre-treatment period to $17.5 \pm 1.0\text{‰}$ within three months after
118 treatment, consistent with increased contributions of isotopically depleted Li derived from basalt-feedstock
119 weathering (basalt $\delta^7\text{Li}$ value: $2.34 \pm 0.65\text{‰}$; Supplementary Fig. 4). Concentrations of rubidium, which
120 substitutes for potassium in feldspars and micas present in the basalt,²⁸ were similarly greater for equivalent
121 stream discharges under post- relative to pre-treatment conditions. While iron, magnesium, and strontium
122 are released during dissolution of both basalt and carbonates,²⁹ their concomitant increase with silicon,
123 lithium, and rubidium suggests freshly applied silicates as the most likely source of their increases in
124 concentration immediately following the basalt application (Supplementary Fig. 2).

125 Preferential streamwater export of Ca, with ERW-driven concentration increases more than 20-fold
126 those of Na and Mg, suggests both enhanced weathering and faster transport of Ca relative to other major
127 cations in response to the basalt treatment (Fig. 2, Supplementary Fig. 2). Transport-related fractionation
128 caused by cation-exchange reactions may potentially contribute to the preferential Ca export. Competitive
129 sorption³⁰ of cations on the Ca-dominant soil exchange complex at W-2 (mean Ca saturation $\sim 85\%$ ³¹) can
130 lower the selectivity of the exchange sites for basalt-derived Ca and lead to the displacement of Ca by other
131 basalt-derived base cations, particularly Mg, resulting in the earlier breakthrough of the less-selectively

132 bound, Ca-enriched solute relative to Mg. In addition, some Mg released from basalt may be retained in
133 Mg-rich clays;³² however, this sink appears minor given the absence of ⁷Li enrichment in streamwater after
134 treatment (Supplementary Fig. 4). Furthermore, incongruent dissolution of abundant basalt minerals,
135 particularly clinopyroxene, promotes Ca release over Mg,³³ while plagioclase dissolution favors Ca over
136 Na and proceeds more rapidly than Si loss.³⁴ Together, competitive sorption on the Ca-dominant soil
137 exchange complex and selective mineral dissolution may act synergistically to enhance calcium export.

138 **Seasonality of the ERW treatment effect**

139 The ERW-attributable streamwater signal exhibited recurring seasonal patterns during the two years
140 following basalt application, with stronger responses in summer and fall and weaker responses in winter
141 and spring (Fig. 3a–c). The GAM-DiD model revealed that the basalt treatment produced statistically
142 significant changes in streamwater chemistry during July–September 2023, with ERW accounting for 14%
143 to 18% of alkalinity, Ca, Mg, Na, and Si (Δc %; Fig. 3a–c and Supplementary Fig. 5a). This strong treatment
144 effect, coinciding with high discharge during summer storms (Fig. 3g, h), drove elevated ERW-sourced
145 export (i.e., solute load per watershed area) in summer, which then declined as streamflow decreased later
146 in the season (Fig. 3d–f). The ERW treatment effect on concentration remained significant but weakened
147 from October–December 2023 (Fig. 3a–c), and stream discharge also trended downward during this period
148 (Figure 3g), leading to more than a 50% reduction in the export of alkalinity, base cations, and Si (Fig. 3d–
149 f, Table 1). During the wintertime (January–March 2025) when stream flow and temperature were at their
150 lowest (Fig 3g, i), ERW treatment effects on solute concentrations were the weakest and insignificant, and
151 loads decreased sharply, with ERW-sourced alkalinity export falling from its summertime high of 102.55 t
152 $\text{CO}_2 \text{ km}^{-2} \text{ yr}^{-1}$ to less than 3 t $\text{CO}_2 \text{ km}^{-2} \text{ yr}^{-1}$ and base cations showing approximately proportional decreases
153 (Fig. 3d–f, Table 1). The treatment effect on streamwater concentration increased again in April–June 2024
154 as temperatures rose and streamwater export was controlled by snowmelt-driven discharge (Fig. 3a–f).
155 Comparable seasonal patterns in the ERW-attributable concentration and export percentages were observed
156 during the second year (July 2024–April 2025), though with slightly lower intensities (Fig. 3a–f, Table 1).


157

158 Figure 3. Temporal dynamics of the ERW treatment effects, solute export rates, and hydroclimatic variables. a-c,
 159 ERW-attributable concentration change ($\Delta c \%$) estimated from the GAM-DiD analysis. Significance levels are
 160 indicated as follows: *** $p \leq 0.001$, ** $p \leq 0.01$, * $p \leq 0.05$, · $p \leq 0.1$, and not significant ($p > 0.1$). The red dashed
 161 line separates the pre- and post-basalt application periods. d-f, Daily (solid black line) and monthly average (blue bar)
 162 export rates of the basalt weathering products. Gray solid lines represent the cumulative export flux of the basalt
 163 weathering products. g-i, Time series of daily (black lines) and monthly average (blue bars) discharge, precipitation,
 164 and temperature).

Table 1 Export estimation of basalt weathering products with 95% confidence intervals.

	Alkalinity as CO ₂ [t CO ₂ km ⁻² yr ⁻¹]	Ca [t km ⁻² yr ⁻¹]	Na [t km ⁻² yr ⁻¹]	Mg [t km ⁻² yr ⁻¹]	Si [t km ⁻² yr ⁻¹]
Jul– Sep 2023	102.55 (86.53, 117.30)	47.20 (39.27, 54.45)	1.50 (1.11, 1.84)	1.41 (1.09, 1.71)	2.83 (2.09, 3.53)
Oct– Dec 2023	46.18 (33.76, 57.46)	20.41 (14.21, 26.01)	0.39 (0.08, 0.66)	0.53 (0.26, 0.77)	0.87 (0.35, 1.36)
Jan– Mar 2024	2.87 (-12.27, 17.12)	8.98 (1.60, 15.86)	0.12 (-0.21, 0.41)	0.14 (-0.16, 0.42)	0.66 (0.11, 1.19)
Apr – Jun 2024	17.18 (10.97, 23.17)	15.21 (12.15, 18.14)	0.25 (0.11, 0.38)	0.37 (0.26, 0.49)	0.41 (0.17, 0.66)
Jul – Sep 2024	80.59 (65.00, 94.93)	35.05 (27.26, 42.18)	1.29 (0.90, 1.61)	1.19 (0.90, 1.45)	2.51 (1.82, 3.18)
Oct – Dec 2024	12.37 (4.55, 19.52)	7.88 (4.10, 11.30)	0.16 (-0.03, 0.32)	0.34 (0.20, 0.47)	0.58 (0.28, 0.86)
Jan– Mar 2025	-6.84 (-15.90, 1.66)	-2.71 (-6.93, 1.21)	-0.09 (-0.25, 0.06)	0.12 (-0.07, 0.31)	0.28 (-0.07, 0.61)
Apr 2025	-0.92 (-14.93, 12.44)	15.47 (8.55, 22.03)	0.88 (0.60, 1.13)	0.68 (0.43, 0.92)	1.06 (0.49, 1.62)
Annual mean	34.72 (30.39, 39.05)	18.71 (16.58, 20.83)	0.53 (0.44, 0.63)	0.59 (0.50, 0.68)	1.16 (0.97, 1.34)

166 This recurring seasonal cycle suggests that interactions among rainfall-runoff processes, watershed
 167 wetness, and temperature shaped the seasonal patterns in ERW-derived solute concentrations and export.
 168 Comparison of *C*-*Q* relations in the summer-fall periods before and after basalt application reveals a
 169 weakening of the streamwater dilution pattern, which is consistent with a lowering of the difference in
 170 solute concentrations within slow-flow and quick flow pathways that deliver water and solutes to the stream
 171 (Fig. 4a, Supplementary Fig. 7). In contrast, the *C*-*Q* relations for winter-spring periods exhibited greater
 172 slopes and were similar before and after basalt application (Fig. 4a, Supplementary Fig. 7), which suggests
 173 comparatively large differences in solute concentrations between quick- and slow-flow pathways in the
 174 baseline period were preserved after the basalt treatment. Seasonal *C*-*Q* relations fitted with a sigmoidal
 175 inverse power-law model (equation (6), with quick-/slow-flow endmembers) show that solute
 176 concentrations associated with slow-flow pathways remained stable year-round (alkalinity:
 177 $4186 \pm 228 \mu\text{eq L}^{-1}$, Ca: $4256 \pm 455 \mu\text{eq L}^{-1}$); however, concentrations of solutes transmitted via quick-
 178 flow pathways increased markedly during the summer-fall seasons of the post-application period with
 179 alkalinity and Ca increasing by up to $1200 \mu\text{eq L}^{-1}$ (Fig. 4b, Supplementary Fig. 7).

180

181 Figure 4. Seasonal concentration-discharge (C - Q) relations and estimated concentrations of slow-/quick-flow
 182 endmembers pre- and post-basalt application. a, Observed C - Q relations for alkalinity and Ca for summer/fall and
 183 winter/spring periods prior to (blue triangles) and after basalt application (orange crosses) and corresponding model
 184 fits (dashed lines). b, Alkalinity and Ca concentrations of quick-flow (blue) and slow-flow (orange) endmembers for
 185 winter/spring and summer/fall periods prior to (open symbols) and after basalt application (filled symbols) as
 186 estimated from inversion of equations (4)–(6).

187 The pronounced summer-fall response of quick-flow pathways to the basalt treatment highlights
 188 the role of near-surface and stream-proximal zones in controlling seasonal ERW solute export. In temperate
 189 catchments, quick flow comprises both new water (recent rainfall or snowmelt) that is delivered to the
 190 stream via overland and near-surface flow and resident (pre-event) soil water and shallow groundwater that
 191 is displaced primarily during hydrologic events and in diminishing quantities during recession to
 192 baseflow.^{24, 35} ERW-derived solutes in quick flow are likely associated with shallow pre-event water that
 193 has interacted extensively with the feedstock between storm periods, with comparatively minor inputs from
 194 feedstock interactions with new water. Lowland areas proximal to the stream, with a shallow water table

195 and high soil moisture, act as key sources of such solute-rich quick flow. In contrast, slow flow showed no
196 detectable ERW signals, reflecting its upslope origin toward the watershed divide and correspondingly long
197 residence times. Additionally, silicate dissolution rates are highly temperature-dependent,³⁶ increasing
198 exponentially with warming,^{36, 37} and further influenced by soil pCO_2 levels, which rise with temperature
199 due to enhanced microbial and root respiration. This temperature effect, then, likely underpins the increase
200 in ERW solute concentrations in summer-fall quick flow (Fig. 4b), while the suppressed winter-spring ERW
201 response reflects both lower temperatures and the strong dilution effect from snowmelt-driven quick flow.

202 **Export rates of basalt weathering products and associated carbon dioxide removal**

203 Our study demonstrates efficient export of basalt weathering products in the first two years following ERW.
204 On an annual basis, ERW-derived alkalinity export averaged $9.47 \text{ t C km}^{-2} \text{ yr}^{-1}$, equivalent to 34.72 t CO_2
205 $\text{km}^{-2} \text{ yr}^{-1}$ (Table 1), which is among the highest observed rates compared to other studies that quantify CDR
206 via changes in alkalinity (and/or cation) fluxes in streams, leachate water, or pore waters.^{32, 38, 39, 40, 41, 42}
207 Previous watershed-scale studies reported $2.5\text{--}13 \text{ t CO}_2 \text{ km}^{-2}$ over 15 years after wollastonite addition (30
208 t ha^{-1}) in a temperate forest,³⁸ while another study reported an average of $0.001 \text{ t CO}_2 \text{ km}^{-2}$ across three
209 small watersheds ($<0.02 \text{ km}^2$) within a tropical oil palm plantation after three annual applications of basalt
210 (50 t ha^{-1}).³⁹ Lysimeter and mesocosm studies usually yield lower rates ($1\text{--}26 \text{ t CO}_2 \text{ km}^{-2} \text{ yr}^{-1}$), even though
211 many used higher rock application rates of up to 100 t ha^{-1} .^{12, 40, 41, 42, 43} The lack of leachate ERW signals in
212 some of these experimental studies likely reflects a combination of factors, including short experimental
213 durations, the absence of natural structure and associated transport pathways in repacked soils, and the use
214 of acidic soils that may scavenge base cations and neutralize alkalinity.

215 Over 22 months, the ERW-derived alkalinity export was $63.8 \text{ t CO}_2 \text{ km}^{-2}$ (5.7 t over the 8.9 ha
216 treated area, Fig. 3d), representing approximately 11% of the maximum CDR potential of the applied basalt
217 ($582 \text{ t CO}_2 \text{ km}^{-2}$, 51.8 t CO_2 over the 8.9 ha treated area, equation (1)). While the applied basalt contained
218 minor inorganic carbon (~0.14%, or 0.22 t in total), its maximum dissolution would account for only 14%

219 of the exported alkalinity from ERW. This indicates that most of the alkalinity export was generated through
220 silicate weathering, corresponding conservatively to 9.5% of the basalt's CDR potential. This value
221 approaches the upper limit of realizable export as predicted by reactive-transport models that account for
222 cation sorption and secondary mineral formation; under such constraints, alkalinity export is generally
223 estimated to be < 10% after two years in most areas of the U.S.⁴⁴ One likely reason for relatively more
224 efficient solute transport in this study (9.5 – 11%) is likely that initial base saturation of soils in W-2 was
225 high (85% Ca), indicating that the potential maximum loss to cation sorption may be lower compared to
226 U.S. averages, as well as suitable climatic and hydrological conditions. Collectively, these findings
227 demonstrate that weathering products can be exported efficiently at the catchment scale over seasonal-to-
228 annual hydrologic timescales that govern their transport to streams and rivers.

229 **Implications for ERW applications at watershed scale**

230 This study demonstrates that watersheds can serve as a natural integrator of ERW signals, providing a
231 promising, scalable unit for MRV (monitoring, reporting, and verification) by capturing the combined
232 effects of basalt weathering rates, hydrological transport, and climatic variability (e.g., temperature and
233 precipitation) on the exports of ERW-derived alkalinity and base cations. In contrast to laboratory studies
234 and field trials,^{45, 46} the ERW treatment effects estimated by the watershed approach (with GAM-DiD)
235 showed distinct, recurring seasonal patterns, with broadly comparable intensities in both years when
236 comparing the same seasons, despite a slight overall decrease in the second year. This temporal consistency
237 suggests that comparable hydrological and environmental conditions in 2023 and 2024 (Fig. 3g–i) exerted
238 a stronger control on the weathering signal than processes intrinsic to the weathering material itself, such
239 as the depletion of reactive surface area or secondary phase formation, at the timescale of about two years.^{45,}
240 ⁴⁷ Therefore, CDR efficiency of large-scale ERW may be more dynamic and sustainable than inferred from
241 laboratory kinetics alone.

242 The breakthrough time of the ERW signal in the W-2 streamwater between basalt application and
243 the initial stream response was rapid, on the order of weeks, whereas 9.5–11% of the potential maximum

244 CDR has been exported as alkalinity over the experimental period of two years. Given the heterogeneity of
245 soils and aquifers in the watershed,⁴⁸ with variable flow paths and water residence times (with mean
246 residence time of 1.3 years at W-2⁴⁹), it is likely that weathering products transported via slow-flow path
247 have yet to emerge and/or are diluted beyond detection. Our stable water isotope analysis showed that $23 \pm$
248 2% of streamflow comprises water younger than 2.3 ± 0.8 months, implying that most water resides in
249 longer-term catchment storage. Thus, while our observations capture the leading edge of ERW signals, they
250 also point to the potential for delayed and distributed responses over longer timescales. Uptake by
251 vegetation⁵⁰ and retention on soil exchange sites^{15,38} may further postpone the export of ERW products by
252 keeping them in the upper soil layers before they reach deeper horizons or streamwater. Capturing the full
253 carbon removal potential of ERW will therefore require integrated catchment monitoring strategies that
254 account for both short-term hydrologic pulses and longer-term stream and groundwater transport, especially
255 under changing conditions driven by climate change. Comprehensive baseline monitoring with control
256 catchments provides the strongest basis for attributing the effects of ERW.

257 Furthermore, the climate- and hydrology-driven seasonal shifts in weathering and solute transport
258 rates indicate that ERW potential may vary across regions and climates. In cold climates, low soil
259 temperatures and pCO_2 constrain weathering kinetics, while in arid systems, low soil moisture and limited
260 runoff may restrict the weathering and export of ERW products.⁴¹ By contrast, catchments with pronounced
261 seasonal precipitation, such as humid temperate and tropical regions, are more likely to sustain both high
262 weathering rates and efficient solute export if CEC is low. These linkages highlight how climate and
263 hydrological variability set fundamental boundaries on the effectiveness of ERW across landscapes. Future
264 watershed-scale ERW research across diverse regions and climates is needed to better understand the factors
265 affecting ERW weathering rates, carbon transport pathways, and its environmental impacts.

266 **Methods**

267 **Site description**

268 The study site, the W-2 watershed, is a 59-ha headwater catchment situated within the Sleepers River
269 Research Watershed in Danville, Vermont, USA. It is a low-elevation (285 m to 377 m) agricultural
270 catchment, with 27% forest and 73% hayfield and pasture.⁵¹ The area experiences a cold, humid continental
271 climate, with mean annual precipitation of 1,050 mm yr⁻¹ and mean annual air temperature of 5.7 °C. The
272 mean daily discharge from the W-2 stream averages $0.76 \pm 0.19 \text{ mm d}^{-1}$, with approximately two-thirds of
273 annual discharge occurring as baseflow.²⁵ While runoff peaks in spring during snowmelt, heavy storms
274 during summer and fall may drive discharge to levels more than an order-of-magnitude above baseflow.
275 The stream weir location for discharge measurement, where water samples were also collected, is Lat:
276 44.45958 Lon: -72.0920.

277 The watershed is underlain by fine, silty calcareous till deposited during the Wisconsinan
278 glaciation.⁵² Beneath the till is the Lower Devonian and Upper Silurian Waits River Formation, which
279 consists of quartz–mica schist with beds of calcareous granulite.⁵¹ Till thickness ranges from less than 2 m
280 near the hilltops to over 10 m downslope towards the stream. The soil in the upland hayfield is a sandy
281 loam, whereas the downslope pasture soil is a loam with approximately equal sand and silt contents, with
282 pH ranging from 4.9 to 7.7 (median pH 6.1).³¹

283 **Basalt application and characteristics**

284 We applied Pioneer Valley Basalt powder at a rate of 20 t ha⁻¹ to an 8.9-ha area of hayfield and pasture in
285 the southern portion of the W-2 watershed (Fig. 1) in June 2023. The basalt feedstock was sourced from
286 metamorphosed basaltic rock from the Holyoke Range, Massachusetts USA (Rock Dust Local, Bridport,
287 Vermont, USA). The moisture content of basalt powder was $10.1 \pm 0.2\%$ at the time of application. Modal
288 mineralogy (thin-section point counts) of the basalt was 35.1% clinopyroxene, 33.7% plagioclase, 10.6%
289 sericite, 9.2% chlorite, 6.7% actinolite, 3.8% opaque minerals, and 0.9% quartz. The basalt feedstock
290 consisted primarily of SiO₂ (51.6%), Al₂O₃ (13.6%), and Fe₂O₃ (13.2%), with notable contents of CaO
291 (9.2%), MgO (5.8%), and Na₂O (2.98%) (Supplementary Table 1). Based on this oxide content, the
292 estimated stoichiometry of the basalt is Ca_{0.36}Mg_{0.31}Na_{0.209}Fe_{0.36}Si_{1.87}Al_{0.58}O₆ (molar mass of 211 g mol⁻¹).

293 The total inorganic carbon content was $0.14 \pm 0.02\%$, measured on the Eltra CS Analyzer. The p80 value
294 (80% of the particles have a diameter less than or equal to) of the basalt powder equaled $297 \mu\text{m}$. The
295 Brunauer–Emmett–Teller (BET) specific surface area of the basalt was $4.3 \text{ m}^2 \text{ g}^{-1}$, measured using the BET
296 N_2 -adsorption method on an Anton Paar Nova 800.

297 The CDR potential [$\text{t CO}_2 \text{ km}^{-2}$] of the basalt was calculated by using the following equation:

298
$$CDR_{potential} = \sum_{Ca,Mg,Na} n_i \cdot \frac{M_{CO_2}}{M_{basalt}} \cdot R_{app} \cdot (1 - \theta) \quad \text{equation (1)}$$

299 where n_i [eq] is the charge equivalent of each major cation (i.e., Ca, Mg, and Na) in basalt
300 ($\text{Ca}_{0.36}\text{Mg}_{0.31}\text{Na}_{0.209}\text{Fe}_{0.36}\text{Si}_{1.87}\text{Al}_{0.58}\text{O}_6$); M_{CO_2} [g mol^{-1}] and M_{basalt} [g mol^{-1}] is the molar mass of CO_2 and
301 basalt, respectively; θ [%] is the moisture content of basalt; and R_{app} [t km^{-2}] is the basalt application rate.

302 Streamwater chemistry and meteorological observations

303 Streamwater samples were collected biweekly or monthly before basalt application from May 2022 to June
304 2023, and twice per week after basalt application from July 2023 to April 2025, with more intensive
305 sampling during storms (hourly). The collected streamwater samples were either filtered onsite immediately
306 or filtered in the lab within 24 h through $0.22 \mu\text{m}$ syringe filters, and divided into subsamples in acid-
307 washed, filtered-streamwater-rinsed, high-density polyethylene (HDPE) bottles for major cations [calcium
308 (Ca^{2+}), magnesium (Mg^{2+}), sodium (Na^+), potassium (K^+)], alkalinity, and trace metal analysis. The samples
309 for trace metal analysis were acidified by adding 50% nitric acid. All the samples were stored at 4°C until
310 analysis. All measurements were performed at the Yale Analytical and Stable Isotope Center (YASIC)
311 following the methods described in ref.²⁵ Aliquots from selected samples were further processed for Li
312 separation and measurements at the Yale Geochemistry Center. The samples were first digested with aqua
313 regia, evaporated and redissolved in 1 ml of 0.2N HCl, and then Li was separated following the methods
314 described in ref.⁵³ The Li isotopic composition measurements were performed on a Thermo Finnigan
315 Neptune Plus ICP-MS and the Li isotopic compositions are reported relative to the L-SVEC-1 lithium

316 carbonate standard, NIST 8545. A typical standard error of a single measurement was 0.07 ‰ (1 σ) and the
317 external precision was better than 0.08 ‰ (1STD).

318 In addition to our own observations, we used published measurements of stream chemistry made
319 from March 1992 to May 2017 at W-2 watershed, as well as published measurements of stream discharge
320 and chemistry made from January 2019 to April 2025 at W-9 watershed from the U.S. Geological Survey
321 (USGS) aqueous chemistry database of the Sleepers River Research Watershed, Danville, Vermont.⁵⁴
322 Watershed W-9 is a 41-ha forested headwater catchment located 6 km from W-2 in the Sleepers River
323 Research Watershed. Daily estimates of air temperature and precipitation for the W-2 and W-9 watersheds
324 were extracted from the Parameter-elevation Regressions on Independent Slopes Model (PRISM)
325 database.⁵⁵

326 **Estimating streamwater chemistry for a no-basalt counterfactual with WRTDS**

327 We applied WRTDS to estimate streamwater chemistry at the W-2 watershed for a counterfactual scenario
328 representing conditions without the basalt application. The model was trained on long-term data (March
329 1992 – June 2023), and the calibrated model was used with W-2 daily discharge measurements made
330 between July 2023 and April 2024 as one means to estimate how streamwater solute concentrations at W-2
331 would vary during the post-treatment period in the absence of the basalt application. The WRTDS method
332 was implemented using the EGRET R package.²¹ Briefly, the daily streamwater solute concentrations were
333 simulated in WRTDS as

$$334 \ln(c) = \beta_0 + \beta_1 \ln(q) + \beta_2 t + \beta_3 \sin(2\pi t) + \beta_4 \cos(2\pi t) + \varepsilon \quad \text{equation (2)}$$

335 where c is the estimated concentration ($\mu\text{eq L}^{-1}$), β_i are the regression coefficients, q is the daily mean
336 discharge ($\text{m}^3 \text{s}^{-1}$), t is time in decimal years, and ε is the unexplained variation. This method uses a weighted
337 regression, where the relevance of each observation to the estimation point is defined by the distance in
338 time, season, and discharge between the observation and the estimation point, thereby generating a unique
339 set of parameters for every combination of q and t values.^{21, 22}

340 **Estimation of basalt treatment effect using a Difference-in-Differences approach**

341 To quantify basalt-treatment effects on streamwater chemistry, we implemented a Generalized Additive
342 Model coupled with a Difference-in-Differences (GAM-DiD) approach that leverages stream chemistry
343 observations from a reference watershed. Watershed W-9 was chosen as the reference owing to its similar
344 climate and parallel hydrological and hydrochemical responses relative to W-2 (Fig. 1). The model structure
345 is as follows:

346
$$\log c_i = \beta_0 + s_1(\log Q_i) + s_2(PPT_i) + s_3(T_i) + s_4(Month_i, by = Watershed_i) + \beta_1 \cdot Watershed_i +$$

347
$$\beta_2 \cdot Prepost_i + \beta_3 \cdot (Watershed_i \times Prepost_i) + \varepsilon_i$$
 equation (3)

348 where $\log c_i$ is the response variable (log-transformed solute concentration c_i [$\mu\text{eq L}^{-1}$] for sample i) from
349 either the treatment or the reference watershed; s_1 , s_2 , s_3 , and s_4 are the spline-based smooth functions
350 used to model nonlinear relationships between each predictor and $\log c_i$; $\log Q_i$ is the log transformed
351 discharge Q_i [mm d^{-1}]; PPT_i [mm d^{-1}] is the precipitation; T_i [$^{\circ}\text{C}$] is the daily average air temperature;
352 $(Month_i, by = Watershed_i)$ indicates the month effect by watershed (treatment or reference);
353 $Watershed_i$ is the binary indicator for treatment and reference watershed (0 = reference, 1 = treatment);
354 $Prepost$ is a categorical indicator for pre- and post-treatment period, where -3, -2, -1, and 0 correspond to
355 the pre-treatment period (three-month intervals from May 2022 to June 2023), and 1–8 represent post-
356 treatment periods (three-month intervals, except for April 2025, which covers one month due to the absence
357 of W-9 water chemistry records thereafter); $Watershed \times Prepost$ is the interaction term representing
358 the core DiD contrast that captures the difference in differences (post vs. pre) between treatment and
359 reference watersheds. Fixed effects comprise an intercept β_0 (expected log concentration in the baseline
360 pre-treatment period for the reference watershed at reference covariate levels), a watershed indicator β_1
361 (time-invariant treatment-reference difference at baseline), period (“ $Prepost$ ”) indicators β_2 (shifts common
362 to both watersheds for each period relative to baseline), and the $Watershed \times Prepost$ interactions β_3 ,
363 which quantify the difference-in-differences for each period. The variable ε_i is the residual error.

364 The coefficients are on the log scale, so exponentiation yields multiplicative effects on
365 concentration. Of particular importance is the quantity $(\exp(\beta_3) - 1) / (\exp(\beta_3) \times 100$, which gives the

366 percentage of streamwater concentration attributable to ERW; we denote this as Δc [%]. This estimated
367 treatment effect from the GAM-DiD model was used to calculate the export rate of the basalt weathering
368 products through stream runoff. The GAM-DiD model was implemented using the mgcv package in R.

369 To enable a DiD analysis despite the mismatched sampling dates of two watersheds, we used the
370 WRTDS model to estimate daily solute concentrations for the reference watershed (W-9). The WRTDS
371 model was trained using W-9 data from January 2019 to June 2023, and the daily estimates that
372 corresponded to times of measurements at W-2 were used as reference watershed concentrations in the DiD
373 analysis.

374 **Endmember mixing analysis**

375 To trace basalt-derived solutes and quantify flow path contributions to the W-2 stream, we developed a
376 quick-flow/slow-flow mixing model with sigmoidal inverse power-law function (equations (4)–(6)). Here,
377 we define two flow-path endmembers of streamwater composition: one is slow-flow water comprised
378 primarily of deeper groundwaters with longer residence times and the second is quick-flow water comprised
379 of near-surface and overland-flow waters with shorter residence times. Quick-flow/slow-flow separation
380 has been used with analysis of stream concentration-discharge relations to infer flow paths by which water
381 is transported through the watershed.^{56, 57} A non-linear relation between stream discharge q and the slow-
382 and quick-flow fractions (i.e., f_{slow} and f_{quick}) can be derived under the assumption that f_{slow} decreases
383 with q and asymptotically approaches zero as q approaches infinity and that the sum of f_{slow} and f_{quick}
384 always equals unity (equation (4), Supplementary Fig. 6a). We combined this sigmoidal inverse power-law
385 function with an endmember mixing equation (equation (5)) to estimate a relation between stream discharge
386 and stream concentration (equation (6)), such that

$$f_{slow} = \frac{1}{1 + a_{slow} \cdot q^{b_{slow}}} \quad \text{equation (4)}$$

$$c_{stream} = c_{slow} \cdot f_{slow} + c_{quick} \cdot (1 - f_{slow}) \quad \text{equation (5)}$$

$$c_{stream} = (c_{slow} - c_{quick}) \cdot \left(\frac{1}{1 + a_{slow} \cdot q^{b_{slow}}} \right) + c_{quick} \quad \text{equation (6)}$$

387 where f_{slow} [-] is the fractional contribution of slow-flow water to streamflow, q [mm d⁻¹] is discharge of
 388 the stream, a_{slow} [-] and b_{slow} [-] are fitted values to identify the f_{slow} change with q in the watershed.
 389 c_{stream} [$\mu\text{eq L}^{-1}$] is the streamwater concentration, c_{slow} [$\mu\text{eq L}^{-1}$] is the slow-flow endmember
 390 concentration, and c_{quick} [$\mu\text{eq L}^{-1}$] is the quick-flow endmember concentration.

391 By fitting equations (4)–(6) to streamwater chemistry data for the pre-treatment period (January
 392 2008 – May 2017 and May 2022 – June 2023), we estimated the endmember concentrations of c_{quick} and
 393 c_{slow} of the solutes (i.e., Ca, Mg, Na, and alkalinity) together with the parameters a_{slow} and b_{slow}
 394 (Supplementary Fig. 6). With the estimated values of a_{slow} and b_{slow} from the pre-treatment data, we then
 395 estimated c_{quick} and c_{slow} of each solute after basalt application. This analysis provides a way to explore
 396 whether basalt weathering signals (e.g., elevated alkalinity and Ca concentration) in the stream are more
 397 closely associated with quick-flow or slow-flow pathways, and how such signals may evolve after basalt
 398 treatment. While we do not assume that the relation between flow pathways and discharge is precise or
 399 universally transferable across catchments or time periods, this approach serves as an illustrative tool to
 400 shed light on the potential origins of observed streamwater concentration changes. The model fitting was
 401 performed in MATLAB R2023b, using the *fmincon* for pre-treatment nonlinear parameter estimation and
 402 *isqlin* for post-treatment endmember estimation.

403 **Quantifying the young water fraction of streamflow**

404 We calculated the young water fraction (F_{yw}) of the W-2 streamflow using $\delta^{18}\text{O}$ isotope values from
 405 precipitation and streamwater from March 1992 to June 2011 (USGS aqueous chemistry database),⁵⁴
 406 following a published approach.⁵⁸ In the following equation, F_{yw} is defined as the proportion of the transit-
 407 time distribution younger than a threshold age and can be estimated from the ratio of the amplitudes of

408 tracer signals (e.g., $\delta^{18}\text{O}$ isotope) in streamwater and precipitation for gamma functions with shape
409 parameter α between 0.2 and 2:⁵⁸

410
$$F_{yw} = A_s/A_p \quad \text{equation (7)}$$

411 where A_s [-] and A_p [-] are the amplitudes of the $\delta^{18}\text{O}$ signals in streamwater and precipitation, respectively.

412 The amplitude and phase of the seasonal $\delta^{18}\text{O}$ from precipitation and streamwater were estimated by
413 nonlinear fitting of

414
$$c(t) = A \sin(2\pi f t - \varphi) + k \quad \text{equation (8)}$$

415 where, A [-] is the amplitude, f [year⁻¹] is the frequency, t [year] is time, φ [-] is the phase shift, and k [-]
416] is the vertical shift.

417 The calculated gamma shape parameter α for the W-2 transit time distribution is 0.81, estimated by solving
418 equation (9) using Newton's method:

419
$$\varphi_s - \varphi_p = \alpha \arctan \sqrt{\left(\frac{A_s}{A_p}\right)^{\frac{2}{\alpha}} - 1} \quad \text{equation (9)}$$

420 where φ_s [-] and φ_p [-] are the phase shifts for streamwater and precipitation, respectively. With the
421 calculated α at W-2 falling within the range of 0.2–2, we reported F_{yw} of the W-2 streamflow as the fraction
422 of water younger than 2.3 ± 0.8 months.⁵⁸ Gaussian error propagation was used to estimate uncertainties.

423 **References**

424 1. Lee H, Calvin K, Dasgupta D, Krinner G, Mukherji A, Thorne P, *et al.* IPCC, 2023: Climate
425 change 2023: Synthesis report, summary for policymakers. Contribution of working groups I, II
426 and III to the sixth assessment report of the intergovernmental panel on climate change [core
427 writing team, h. Lee and j. Romero (eds.)]. IPCC, geneva, Switzerland. 2023.

428 2. Köhler P, Hartmann J, Wolf-Gladrow DA. Geoengineering potential of artificially enhanced
429 silicate weathering of olivine. *Proceedings of the National Academy of Sciences* 2010, **107**(47):
430 20228-20233.

432

433 3. Shukla PR, Skea J, Slade R, Al Khourdajie A, van Diemen R, McCollum D, *et al.* Climate change
434 2022: Mitigation of climate change. *Contribution of working group III to the sixth assessment*
435 *report of the Intergovernmental Panel on Climate Change 2022*, **10**: 9781009157926.

436 4. Hartmann J, West AJ, Renforth P, Köhler P, De La Rocha CL, Wolf-Gladrow DA, *et al.* Enhanced
437 chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply
438 nutrients, and mitigate ocean acidification. *Reviews of Geophysics* 2013, **51**(2): 113-149.

439

440 5. Strelfer J, Amann T, Bauer N, Kriegler E, Hartmann J. Potential and costs of carbon dioxide
441 removal by enhanced weathering of rocks. *Environmental Research Letters* 2018, **13**(3): 034010.

442

443 6. Taylor LL, Quirk J, Thorley RMS, Kharecha PA, Hansen J, Ridgwell A, *et al.* Enhanced
444 weathering strategies for stabilizing climate and averting ocean acidification. *Nature Climate
445 Change* 2016, **6**(4): 402-406.

446

447 7. Harrington KJ, Hilton RG, Henderson GM. Implications of the Riverine Response to Enhanced
448 Weathering for CO₂ removal in the UK. *Applied Geochemistry* 2023, **152**: 105643.

449

450 8. Beerling DJ, Kantzas EP, Lomas MR, Wade P, Eufrasio RM, Renforth P, *et al.* Potential for large-
451 scale CO₂ removal via enhanced rock weathering with croplands. *Nature* 2020, **583**(7815): 242-
452 248.

453

454 9. Beerling DJ, Leake JR, Long SP, Scholes JD, Ton J, Nelson PN, *et al.* Farming with crops and
455 rocks to address global climate, food and soil security. *Nature Plants* 2018, **4**(3): 138-147.

456

457 10. Baek SH, Kanzaki Y, Lora JM, Planavsky N, Reinhard CT, Zhang S. Impact of Climate on the
458 Global Capacity for Enhanced Rock Weathering on Croplands. *Earth's Future* 2023, **11**(8):
459 e2023EF003698.

460

461 11. Bormann FH, Likens GE. Nutrient Cycling. *Science* 1967, **155**(3761): 424-429.

462

463 12. Holzer IO, Nocco MA, Houlton BZ. Direct evidence for atmospheric carbon dioxide removal via
464 enhanced weathering in cropland soil. *Environmental Research Communications* 2023, **5**(10):
465 101004.

466

467 13. Renforth P, von Strandmann PP, Henderson G. The dissolution of olivine added to soil:
468 Implications for enhanced weathering. *Applied Geochemistry* 2015, **61**: 109-118.

469

470 14. Dietzen C, Rosing MT. Quantification of CO₂ uptake by enhanced weathering of silicate
471 minerals applied to acidic soils. *International Journal of Greenhouse Gas Control* 2023, **125**:
472 103872.

473

474

475 15. Johnson CE, Driscoll CT, Blum JD, Fahey TJ, Battles JJ. Soil chemical dynamics after calcium
476 silicate addition to a northern hardwood forest. *Soil Science Society of America Journal* 2014,
477 **78**(4): 1458-1468.

478 16. Strandmann P, He XQ, Zhou Y, Wilson DJ. Comparing open versus closed system weathering
479 experiments using lithium isotopes. *APPLIED GEOCHEMISTRY* 2025, **189**.

481 17. Maher K, Steefel CI, White AF, Stonestrom DA. The role of reaction affinity and secondary
482 minerals in regulating chemical weathering rates at the Santa Cruz Soil Chronosequence,
483 California. *Geochimica et Cosmochimica Acta* 2009, **73**(10): 2804-2831.

485 18. Gaillardet J, Dupré B, Louvat P, Allegre C. Global silicate weathering and CO₂ consumption
486 rates deduced from the chemistry of large rivers. *Chemical geology* 1999, **159**(1-4): 3-30.

488 19. Deng K, Yang S, Guo Y. A global temperature control of silicate weathering intensity. *Nature
489 Communications* 2022, **13**(1): 1781.

491 20. Maher K. The dependence of chemical weathering rates on fluid residence time. *Earth and
492 Planetary Science Letters* 2010, **294**(1): 101-110.

494 21. Hirsch RM, De Cicco LA. User guide to exploration and graphics for RivEr Trends (EGRET) and
495 dataRetrieval: R packages for hydrologic data: US Geological Survey; 2015. Report No.: 2328-
496 7055.

498 22. Hirsch RM, Moyer DL, Archfield SA. Weighted regressions on time, discharge, and season
499 (WRTDS), with an application to Chesapeake Bay river inputs. *JAWRA Journal of the American
500 Water Resources Association* 2010, **46**(5): 857-880.

502 23. Tazhitdinova A, Vazquez-Bare G. Difference-in-Differences with Unequal Baseline Treatment
503 Status: National Bureau of Economic Research; 2023.

505 24. Shanley JB, Chalmers AT, Denner JC, Clark SF, Sebestyen SD, Matt S, *et al.* Hydrology and
506 biogeochemistry datasets from Sleepers River Research Watershed, Danville, Vermont, USA.
507 *Hydrological Processes* 2022, **36**(2).

509 25. Sun F, Rioux RA, Miller-Brown WA, Shrestha B, Shanley JB, Planavsky NJ, *et al.* Long-term
510 trends of streamwater chemistry in an agricultural watershed: Effects of anthropogenic and
511 climatic factors. *Science of The Total Environment* 2025, **970**: 179017.

513 26. Hoefs J, Sywall M. Lithium isotope composition of quaternary and tertiary biogenic carbonates
514 and a global lithium isotope balance. *Geochimica et Cosmochimica Acta* 1997, **61**(13): 2679-
515 2690.

517

518 27. Hathorne EC, James RH. Temporal record of lithium in seawater: A tracer for silicate weathering?
519 *Earth and Planetary Science Letters* 2006, **246**(3): 393-406.

520 28. Simmons EC. rubidiumRubidium: Element and geochemistry. *Geochemistry*. Springer
521 Netherlands: Dordrecht, 1998, pp 555-556.

523 29. Gaillardet J, Viers J, Dupré B. 7.7 - Trace Elements in River Waters. In: Holland HD, Turekian
524 KK (eds). *Treatise on Geochemistry (Second Edition)*. Elsevier: Oxford, 2014, pp 195-235.

526 30. Violante A. Chapter Three - Elucidating Mechanisms of Competitive Sorption at the
527 Mineral/Water Interface. In: Sparks DL (ed). *Advances in Agronomy*, vol. 118. Academic Press,
528 2013, pp 111-176.

530 31. Zacharias Q, Rioux R, Sun F, Tatge W, Pihlap E, Nyavor E, *et al*. Spatiotemporal soil fertility
531 responses to an enhanced rock weathering deployment within a temperate, agricultural watershed.
532 *Preprint at* [*https://doi.org/10.7021/cdrxiv2025460v1*](https://doi.org/10.7021/cdrxiv2025460v1) (2025).

534 32. Niron H, Vienne A, Frings P, Poetra R, Vicca S. Exploring the synergy of enhanced weathering
535 and Bacillus subtilis: A promising strategy for sustainable agriculture. *Global Change Biology*
536 2024, **30**(9): e17511.

538 33. Schott J, Berner RA, Sjöberg EL. Mechanism of pyroxene and amphibole weathering—I.
539 Experimental studies of iron-free minerals. *Geochimica et Cosmochimica Acta* 1981, **45**(11):
540 2123-2135.

542 34. Peters SC, Blum JD, Driscoll CT, Likens GE. Dissolution of wollastonite during the experimental
543 manipulation of Hubbard Brook Watershed 1. *Biogeochemistry* 2004, **67**(3): 309-329.

545 35. Saiers JE, Fair JH, Shanley JB, Hosen J, Matt S, Ryan KA, *et al*. Evaluating Streamwater
546 Dissolved Organic Carbon Dynamics in Context of Variable Flowpath Contributions With a
547 Tracer-Based Mixing Model. *Water Resources Research* 2021, **57**(10): e2021WR030529.

549 36. Dessert C, Dupré B, Gaillardet J, François LM, Allègre CJ. Basalt weathering laws and the
550 impact of basalt weathering on the global carbon cycle. *Chemical Geology* 2003, **202**(3-4): 257-
551 273.

553 37. Kump LR, Brantley SL, Arthur MA. Chemical weathering, atmospheric CO₂, and climate.
554 *Annual Review of Earth and Planetary Sciences* 2000, **28**(1): 611-667.

556 38. Taylor LL, Driscoll CT, Groffman PM, Rau GH, Blum JD, Beerling DJ. Increased carbon capture
557 by a silicate-treated forested watershed affected by acid deposition. *Biogeosciences* 2021, **18**(1):
558 169-188.

560

561 39. Larkin CS, Andrews MG, Pearce CR, Yeong KL, Beerling DJ, Bellamy J, *et al.* Quantification of
562 CO₂ removal in a large-scale enhanced weathering field trial on an oil palm plantation in Sabah,
563 Malaysia. *Frontiers in Climate* 2022, **4**: 959229.

564 40. Holden FJ, Davies K, Bird MI, Hume R, Green H, Beerling DJ, *et al.* In-field carbon dioxide
565 removal via weathering of crushed basalt applied to acidic tropical agricultural soil. *Science of
566 The Total Environment* 2024, **955**: 176568.

568 41. Buckingham FL, Henderson GM, Holdship P, Renforth P. Soil core study indicates limited CO₂
569 removal by enhanced weathering in dry croplands in the UK. *Applied Geochemistry* 2022, **147**:
570 105482.

572 42. Amann T, Hartmann J, Struyf E, de Oliveira Garcia W, Fischer EK, Janssens I, *et al.* Enhanced
573 Weathering and related element fluxes – a cropland mesocosm approach. *Biogeosciences* 2020,
574 **17**(1): 103-119.

576 43. Vienne A, Frings P, Rijnders J, Suhrhoff TJ, Reershemius T, Poetra RP, *et al.* Weathering without
577 inorganic CDR revealed through cation tracing. *EGUphere* 2025, **2025**: 1-24.

579 44. Kanzaki Y, Planavsky N, Zhang S, Jordan J, Suhrhoff TJ, Reinhard C. Soil cation storage is a key
580 control on the carbon removal dynamics of enhanced weathering. *Environmental Research
581 Letters* 2025, **20**(7): 074055.

583 45. White AF, Schulz MS, Lawrence CR, Vivit DV, Stonestrom DA. Long-term flow-through column
584 experiments and their relevance to natural granitoid weathering rates. *Geochimica et
585 Cosmochimica Acta* 2017, **202**: 190-214.

587 46. White AF, Brantley SL. The effect of time on the weathering of silicate minerals: why do
588 weathering rates differ in the laboratory and field? *Chemical Geology* 2003, **202**(3): 479-506.

590 47. Calabrese S, Wild B, Bertagni MB, Bourg IC, White C, Aburto F, *et al.* Nano- to Global-Scale
591 Uncertainties in Terrestrial Enhanced Weathering. *Environmental Science & Technology* 2022,
592 **56**(22): 15261-15272.

594 48. Molins S, Svyatsky D, Xu Z, Coon ET, Moulton JD. A multicomponent reactive transport model
595 for integrated surface-subsurface hydrology problems. *Water Resources Research* 2022, **58**(8):
596 e2022WR032074.

598 49. Shanley JB, Sebestyen SD, McDonnell JJ, McGlynn BL, Dunne T. Water's Way at Sleepers River
599 watershed – revisiting flow generation in a post-glacial landscape, Vermont USA. *Hydrological
600 Processes* 2015, **29**(16): 3447-3459.

603 50. Dalmora AC, Ramos CG, Silva Oliveira ML, Silva Oliveira LF, Homrich Schneider IA,
604 Kautzmann RM. Application of andesite rock as a clean source of fertilizer for eucalyptus crop:
605 Evidence of sustainability. *Journal of Cleaner Production* 2020, **256**: 120432.

606 51. Shanley JB, Kendall C, Smith TE, Wolock DM, McDonnell JJ. Controls on old and new water
607 contributions to stream flow at some nested catchments in Vermont, USA. *Hydrological
608 Processes* 2002, **16**(3): 589-609.

610 52. Wright SF. Late Wisconsinan ice sheet flow across northern and central Vermont, USA.
611 *Quaternary Science Reviews* 2015, **129**: 216-228.

613 53. Kalderon-Asael B, Katchinoff JAR, Planavsky NJ, Hood AvS, Dellinger M, Bellefroid EJ, *et al.* A
614 lithium-isotope perspective on the evolution of carbon and silicon cycles. *Nature* 2021,
615 **595**(7867): 394-398.

617 54. Matt S, Shanley J, Chalmers A, Sebestyen S, Merriam J, Bailey S. Aqueous chemistry database,
618 sleepers river research watershed, Danville, Vermont, 1991-2018. *US Geological Survey data
619 release* <https://doi.org/10.5066/P9380HQG> (2021).

621 55. PRISM CG. Oregon State University, <https://prism.oregonstate.edu>, data created 1 May 2025,
622 accessed 1 May 2025.

624 56. Westfall TG, Peterson TJ, Lintern A, Western AW. Slow and Quick Flow Models Explain the
625 Temporal Dynamics of Daily Salinity in Streams. *Water Resources Research* 2025, **61**(6):
626 e2024WR039103.

628 57. Minaudo C, Dupas R, Gascuel-Odoux C, Roubeix V, Danis P-A, Moatar F. Seasonal and event-
629 based concentration-discharge relationships to identify catchment controls on nutrient export
630 regimes. *Advances in Water Resources* 2019, **131**: 103379.

632 58. Kirchner JW. Aggregation in environmental systems – Part 1: Seasonal tracer cycles quantify
633 young water fractions, but not mean transit times, in spatially heterogeneous catchments. *Hydrol
634 Earth Syst Sci* 2016, **20**(1): 279-297.

636 **Ethics declarations**

637 The authors declare that they have no competing interests.

638 **Acknowledgments**

639 We thank Brad Erkkila and Jonas Karosas from Yale Analytical and Stable Isotope Center (YASIC) for their
640 help in the measurements of water samples. We also acknowledge the graciousness of Dave Langmaid, who
641 enabled our access to the W-2 watershed. This work was supported by the Yale Center for Natural Carbon

642 Capture (YCNCC). Any use of trade, firm, or product names is for descriptive purposes only and does not
643 imply endorsement by the U.S. Government.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- [SI251126final.docx](#)