CATAMOUNT, MOUNTAIN LION, COUGAR, PUMA, FLORIDA PANTHER

Mark Elbroch, melbroch@panthera.org

Mark Elbroch, PhD., https://panthera.org/mark-elbroch-phd Google Scholar: https://scholar.google.com/citations?user=ZuQriQAAAAJ&hl=en Research Gate: https://www.researchgate.net/profile/L-Mark-Elbroch

Vermont Departm Wildlife Action P Species Conserva	nent of Fish Plan - Revisio ation Report	and Wildlife n 2015	
Common Name: Scientific Name: Species Group:	Eastern Mountain Lion Puma concolor couguar Mammal		
Conservation A	Assessmen	t	
Final Assessmen	nt: Medium Pric	rity Global Rank: G5 State Rank: SH Extirnated in VT? yes	Global Trend: State Trend: N/A Regional SCCN? No
Species Str	ategies	Compared in (11 yes	Regional OCCUT TR
Strategy Type	Strategy Priority	Strategy Description	Performance Measure
Policy & Regulations	High	Pending federal delisting, maint enforce state protections of enti puma Genus.	ain and re
Research	Medium	Identify areas within state that c support viable Mountain Lion populations (Glick 2014) and de state recovery plan.	xould avelop a
Awareness Raising and Communications	High	Determine public attitudes towa Mountain Lion recovery efforts i (e.g. McGovern and Kretser 20' Provide interpretive and public education material about Mount Lions.	rds n VT 14); ain

Mark Elbroch, PhD., https://panthera.org/mark-elbroch-phd Google Scholar: https://scholar.google.com/citations?user=ZuQriQAAAAJ&hl=en Research Gate: https://www.researchgate.net/profile/L-Mark-Elbroch

relationships. *Mammal Review*, 52(3), pp.360-376.

LaBarge, L.R., Evans, M.J., Miller, J.R., Cannataro, G.,
Hunt, C. and Elbroch, L.M., 2022. Pumas Puma concolor as ecological brokers: a review of their biotic relationships. *Mammal Review*, *52*(3), pp.360-376.
Karandikar, H., Serota, M.W., Sherman, W.C., Green,
J.R., Verta, G., Kremen, C. and Middleton, A.D., 2022.
Dietary patterns of a versatile large carnivore, the puma (Puma concolor). *Ecology and evolution*, *12*(6), p.e9002.

Cristescu, B; Bose, S; Elbroch, LM; Allen, ML; Wittmer, HU; . 2019. Habitat selection when killing primary versus alternative prey species supports prey specialization in an apex predator. Journal of Zoology 309, 259-268.

Stoner, D.C., Ditmer, M.A., Mitchell, D.L., Young, J.K. and Wolfe, M.L., 2021. Conflict, coexistence, or both? Cougar habitat selection, prey composition, and mortality in a multiple-use landscape. California Fish and Wildlife 107(3):147-172.

Cristescu, B; Bose, S; Elbroch, LM; Allen, ML; Wittmer, HU; . 2019. Habitat selection when killing primary versus alternative prey species supports prey specialization in an apex predator. Journal of Zoology 309, 259-268.

Stoner, D.C., Ditmer, M.A., Mitchell, D.L., Young, J.K. and Wolfe, M.L., 2021. Conflict, coexistence, or both? Cougar habitat selection, prey composition, and mortality in a multiple-use landscape. California Fish and Wildlife 107(3):147-172.

Dellinger, J.A., Macon, D.K., Clifford, D.L. and Torres, S.G., 2021. Temporal trends and drivers of mountain lion depredation in California, USA. *Human-Wildlife Interactions*, *15*(1), pp.162-177.

Peebles, K.A., Wielgus, R.B., Maletzke, B.T. and Swanson, M.E., 2013. Effects of remedial sport hunting on cougar complaints and livestock depredations. *PLoS one*, *8*(11), p.e79713.

Mattson, D., Logan, K. and Sweanor, L., 2011. Factors governing risk of cougar attacks on humans. *Human-Wildlife Interactions*, *5*(1), pp.135-158.

Bombieri, G., Penteriani, V., Almasieh, K., Ambarlı, H., Ashrafzadeh, M.R., Das, C.S., Dharaiya, N., Hoogesteijn, R., Hoogesteijn, A., Ikanda, D. and Jędrzejewski, W., 2023. A worldwide perspective on large carnivore attacks on humans. *PLoS biology*, *21*(1), p.e3001946.

Compare (1 fatality due to mountain lion every 4 yrs over last 130 yrs...vs. 440 people/yr in deer collisions, roughly 50 people/yr from dogs, 20 people/yr for lightning)

and ecological associations. American Naturalist 127:744–771.

Quigley, H. & Hornocker, M. (2009). Cougar population dynamics. In Cougar: ecology and conservation: 59–75. M. Hornocker & S. Negri (Eds). Chicago: University of Chicago Press.

Elbroch, L Mark; Levy, Michael; Lubell, Mark; Quigley, Howard; Caragiulo, Anthony; . 2017. Adaptive social strategies in a solitary carnivore. *Science Advances* 3, e1701218.

See references for next slide.

Crooks KR, Burdett CL, Theobald DM, King SRB, Di Marco M, Rondinini C, Boitani L. Quantification of habitat fragmentation reveals extinction risk in terrestrial mammals. Proc Natl Acad Sci U S A. 2017 Jul 18;114(29):7635-7640.

Brodie JF, Paxton M, Nagulendran K, Balamurugan G, Clements GR, Reynolds G, Jain A, Hon J. Connecting science, policy, and implementation for landscape-scale habitat connectivity. Conserv Biol. 2016 Oct;30(5):950-61.

Sweanor, L.L., Logan, K.A. and Hornocker, M.G., 2000. Cougar dispersal patterns, metapopulation dynamics, and conservation. *Conservation Biology*, *14*(3), pp.798-808.

Covariate	Data source (resolution)	Hypothesized effect on resource selection	Published support of hypothesized effect
Biotic/landscape (bottom-up)	· · · · · · · · · · · · · · · · · · ·		Sec. Sec.
Distance to water	JRC Global Surface Water (30 m)	-	Dellinger et al. 2020
Normalized difference vegeta- tion index	Landsat 8 (30 m)	+	Logan and Sweanor 2001, Walters 2001
Gross primary productivity	Landsat 8 (30 m)	+	Logan and Sweanor 2001, Walters 2001
Precipitation	PERSIANN-CDR	+	Logan and Sweanor 2001, Walters 2001
Slope	U.S. Geological Survey (30 m)	+	Zeller et al. 2017
Forest cover	MOD44Bv006 (250 m)	+	Robinson et al. 2015, Dellinger et al. 2020
Shrub cover	MOD44Bv006 (250 m)	+	Robinson et al. 2015, Dellinger et al. 2020
Non-vegetation	MOD44Bv006 (250 m)	÷	Zeller et al. 2017, Dellinger et al. 2020
Elevation	U.S. Geological Survey (30 m)	+	Robinson et al. 2015, Dellinger et al. 2020
Aspect	U.S. Geological Survey (30 m)	South preferred	Robinson et al. 2015
Human impact/competition (top-de	own)		
Roads impact	Wildlife Conservation Society	e,	Zeller et al. 2017, Dellinger et al. 2020
Land-use impact	Wildlife Conservation Society (100 m)	ć. –	Robinson et al. 2015, Zeller et al. 2017
Infrastructure impact	Wildlife Conservation Society (100 m)	÷	Robinson et al. 2015, Zeller et al. 2017
Population density	U.S. Census Bureau (100 m)	-	Dellinger et al. 2020

O'Malley, W.C., Elbroch, L.M., Zeller, K.A., Beie Beale, M.M., Beausoleil, R.A., Kertson, B., Kno Kunkel, K., Maletzke, B.T. and Martins, Q., 207 Machine learning allows for large-scale habitat prediction of a wide-ranging carnivore across diverse ecoregions. *Landscape Ecology*, 39(5), pp.1-16.

O'Malley, W.C., Elbroch, L.M., Zeller, K.A., Beie Beale, M.M., Beausoleil, R.A., Kertson, B., Kno Kunkel, K., Maletzke, B.T. and Martins, Q., 202 Machine learning allows for large-scale habitat prediction of a wide-ranging carnivore across diverse ecoregions. *Landscape Ecology*, 39(5), pp.1-16.

Question #2. Are there large contiguous blocks of suitable habitat?

Ecological assumption	Habitat Variable	Threshold Description	Data Source	Spatial Resolution
Pumas avoid open habitats in North America (LaRue and Nielsen 2008; Burdett et al. 2010; Gray et al. 2016)	Land cover	Exclude agriculture, high elevation rock and grasslands.	Friedl & Sulla- Manashe (2018)	500 m
Pumas require strutured habitat for hunting and survival (Gray et al., 2016).	Forest cover	Pumas excluded from cells with <53% forest cover	Hansen et al. (2013)	30 m
Pumas follow prey, and deer and elk avoid deep snow (Laundré & Hernández, 2003; Poole & Mowat, 2005)	Maximum snow depth	Pumas (and puma prey) excluded when average winter snow depth ≥50cm	SNODAS	1 km
Pumas excluded from areas with high housing density (Burdett et al., 2010)	Housing density	Pumas excluded when housing density ≥0.68 units/ha	ICLUS	90 m
Pumas excluded from habitat adjacent people (Wilmers et al., 2013; Yovovich et al., 2021)	Human development proximity	Pumas excluded from habitat ≤600m from human structures	Yang et al (2018)	30 m
People excluded from habitat immediateoly adjacent large highways (Knopff et al., 2014)	Highway proximity	Pumas excluded from habitat within 170m of interstate highways and major arterials.	TIGER US Census Roads	NA
have conflict that leads to lower puma survival; puma survival is higher in habitat with low livestock density (Guerisoli et al. 2021)	Livestock density	Pumas excluded from habitat with ≥14.5 animals/km²	Robinson et al. (2014)	10 km

This is not about car strikes—this is about the likeliness of a home range crossing such roads (which is unlikely, so it could divide populations.

Yovovich, Veronica; Robinson, Nathaniel; Robinson, Hugh; Manfredo, Michael J; Perry, Shelby; Bruskotter, Jeremy T; Vucetich, John A; Solórzano, Luis Aníbal; Roe, Lydia A; Lesure, Alison; . 2023. <u>Determining</u> <u>puma habitat suitability in the Eastern USA</u>. *Biodiversity and Conservation* 32, 921-941.

Not suitable to use FL as a comparison for 2 reasons: 1) they lack large contiguous habitat as determined by these methods, and 2) their small founder population was not genetically healthy to begin with

For example, residents won't generally cross a highway with 5000-7000 cars/day, but dispersers will...

Glass, T.W., Beausoleil, R.A., Elbroch, L.M., Kertson, B.N., Maletzke, B.T., Martins, Q., Matchett, M.R., Vickers, T.W., Wilmers, C.C., Wittmer, H.U. and Robinson, H., 2024. Limited cougar recolonization of eastern North America predicted by an individual-based model. *Biological Conservation*, *298*, p.110756.

Dutcome	
larvest	35.4% (35.1 – 35.5%)
Roadkill	29.7% (29.5 - 29.9%)
Non-harvest mortality	11.9% (11.8 – 12.1%)
Natural mortality	11.1% (11.0 - 11.4%)
Established and reproduced	8.8% (8.7 – 8.9%)
Established without mate	2.9% (2.8 – 3.0%)

Glass, T.W., Beausoleil, R.A., Elbroch, L.M., Kertson, B.N., Maletzke, B.T., Martins, Q., Matchett, M.R., Vickers, T.W., Wilmers, C.C., Wittmer, H.U. and Robinson, H., 2024. Limited cougar recolonization of eastern North America predicted by an individual-based model. *Biological Conservation*, *298*, p.110756.

Vermont Departm Wildlife Action P Species Conserva	nent of Fish lan - Revisio tion Report	and Wildlife n 2015	1. Sector
Common Name: Scientific Name: Species Group:	Eastern Me Puma concole Mammal	ountain Lion or couguar	
Conservation A	ssessmen	t starter	
Final Assessmen	nt: Medium Pric	rity Global Rank: G5 State Rank: SH Extirnated in VT? yes	Global Trend: State Trend: N/A Regional SGCN? No
Species Str	ategies		
Strategy Type	Strategy Priority	Strategy Description	Performance Measure
Policy & Regulations	High	Pending federal delisting, maintain an enforce state protections of entire puma Genus.	^d 1
Research	Medium	Identify areas within state that could	2
		support viable mountain Lion populations (Glick 2014) and develop state recovery plan.	a 3
Awareness Raising and	High	Determine public attitudes towards Mountain Lion recovery efforts in VT	
Communications		(e.g. McGovern and Kretser 2014);	4
		education material about Mountain Lions.	5

What we're currently working on?

• Numerous social studies assessing tolerance for large carnivores and support for reintroduction. Our initial work was done to compare across states, and now we are refining our work with data collected at the county level.

(*Without doubt additional targeted surveys will need to be conducted in Vermont across various constituent groups as part of a local feasibility study.)

- Mapping habitat as a combination of human tolerance and habitat suitability
- Mapping probable human-caused mortality / survival across the region

(*Our habitat work will make mapping suitable habitat in VT, will be a much easier task.)

t and fastest way to produce the required materials

inclusion of graduate students makes the process much much longer and much more expensive. In terms of time I'd suggest a complete feasibility study could be conducted in 18 months.

