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Abstract 
Context  Resource selection functions are power-
ful tools for predicting habitat selection of animals. 
Recently, machine-learning methods such as random 
forest have gained popularity for predicting habitat 
selection due to their flexibility and strong predictive 
performance.
Objectives  We tested two methods for predict-
ing continental-scale, second-order habitat selec-
tion of a wide-ranging large carnivore, the mountain 
lion (Puma concolor), to support continent-wide 

conservation management, including estimating 
abundance, and to predict habitat suitability for recol-
onizing or reintroduced animals.
Methods  We compared a generalized linear model 
(GLM) and a random forest model using GPS loca-
tion data from 476 individuals across 20 study sites 
in the western USA and Canada and remotely-sensed 
landscape data. We internally validated models and 
examined their ability to correctly classify used and 
available points by calculating area under the receiver 
operating characteristics (AUC). We performed 
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leave-one-out (LOO) out-of-sample tests of predictive 
strength on both models.
Results  Both models suggested that mountain lions 
select for steeper slopes, areas closer to water, and 
with higher normalized difference vegetation index 
(NDVI), and against variables associated with human 
impact. The random forest model (AUC = 0.94) dem-
onstrated that mountain lion habitat can be accurately 
predicted at continental scales, outperforming the tra-
ditional GLM model (AUC = 0.68). Our LOO valida-
tion provided similar results (x̄ = 0.93 for the random 
forest and x̄ = 0.65 for the GLM).
Conclusions  We found that the added flexibility of 
the random forest model provided deeper insights into 
how individual covariates impacted habitat selection 
across diverse ecosystems. Our LOO analyses sug-
gested that our model can predict mountain lion habitat 
selection in unoccupied areas or where local data are 
unavailable. Our model thus provides a tool to support 
discussions and analyses relevant to continent-wide 
mountain lion conservation and management including 
estimating metapopulation abundance.

Keywords  Conservation · Habitat suitability · 
Puma concolor · Random forest · Machine learning · 
Resource selection function

Introduction

In ecological modeling, we choose between the distinct 
goals of inference or prediction (James et al. 2013; Bzdok 

and Ioannidis 2019). The goal of inference is to differ-
entiate between alternative a priori hypotheses, which 
requires low variance to determine coefficients that are 
non-zero. In contrast, prediction seeks to minimize mean 
squared errors to best forecast new observations (James 
et  al. 2013; Tredennick et  al. 2021). When modeling 
animal habitat relationships, for example, the difference 
can be expressed as “what” or “why” versus “where”. 
Inference seeks to understand “what” constitutes habitat 
(i.e., what features of the landscape do animals select) or 
“why” an animal uses a particular habitat. In contrast, pre-
diction seeks to understand “where” habitat occurs (i.e., 
where on the landscape do animals prefer to live). The 
question of where is fundamental to numerous ecologi-
cal and conservation management activities. For example, 
predicting species distribution might be the basis for esti-
mating abundance (Jędrzejewski et  al. 2018), predicting 
future use by recolonizing or reintroduced species (Win-
kel et al. 2023), or guiding strategic investment for spe-
cies conservation management or interventions (Li et al. 
2017). Generally, models with high flexibility exhibit 
lower interpretability but are more suited to prediction 
(Bzdok and Ioannidis 2019). When the goal is prediction, 
Westphal and Brannath (2020) recommend comparing 
multiple models and then choosing the one with the high-
est predictive strength, rather than the most parsimonious, 
as is characteristic when the goal is inference.

Resource selection functions (RSF) are a common 
approach to predicting the probability of an animal’s 
use of different landscape traits, such as elevation, 
terrain ruggedness, or variations in vegetation (Manly 
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et  al. 2002). Typically, RSFs are performed using 
generalized linear models (GLM) but more recently, 
ecologists are increasingly turning to machine-learn-
ing algorithms, namely, a popular technique known 
as random forest (Breiman 2001; Shoemaker et  al. 
2018; Bohnett et  al. 2020). Random forest models 
are not bound by linearity, are well suited to include 
a large numbers of covariates, and can detect complex 
relationships and interactions. In addition, the boot-
strapped structure of random forest models decreases 
the problematic issue of correlated data commonly 
associated with wildlife movement data (Breiman 
2001; Fleming et  al. 2015). Random forest models 
should apply well to the habitat selection behavior of 
wild animals (Shoemaker et al 2018); however, their 
performance appears to suffer with unbalanced pres-
ence-absence datasets in which absences outnumber 
detections (Chiaverini et al. 2023).

Mountain lions (Puma concolor) are a generalist 
carnivore that occupy diverse habitats ranging from 
mountains, to jungles, to deserts. Historically, they 
ranged from central Canada to the southern tip of 
South America, but following range contraction due 
to intense persecution, they remain absent in what 
was historic range in the eastern USA and Canada 
(Yovovich et al. 2023) as well as portions of Latin 
America (Nielsen et  al. 2015). Mountain lions are 
predominantly managed as a game species in the 
USA and Canada at the state or provincial level, 
hindering our ability to estimate their abundance 
or any fitness metric that might support conserva-
tion strategies or management decisions at larger 
scales (Elbroch et  al. 2022). Nevertheless, moun-
tain lions have seen recovery into new and historic 
range in the USA and Canada over the last 50 years 
(Papouchis 2004), resulting in significant interest 
in mapping their potential use of historic range as 
well as novel habitats like desert and boreal eco-
systems where they were previously absent or at 
very low density but are now colonizing due to 
changes in human attitudes (Benson et  al. 2023) 
habitat and prey distributions (e.g., bighorn sheep 
(Ovis canadensis), Berger and Wehausen 1991; 
woodland caribou (Rangifer tarandus caribou), 
White et  al. 2020). As an obligate carnivore, the 
foremost resource that mountain lions depend on 
is ungulate prey (Logan and Sweanor 2001; Lend-
rum et al. 2014), but there may also be abiotic land-
scape traits that affect mountain lion fitness, such as 

rugged terrain important for rest and thermoregula-
tion (Kusler et  al. 2017), or specific habitat where 
preferred ungulate prey is hunted (Cristescu et  al. 
2019). As such, analysis of mountain lion resource 
selection should include abiotic landscape traits 
alongside metrics that may indicate prey distribu-
tion and abundance such as primary productivity 
(Walters 2001).

As a wide-ranging species, mountain lions occupy 
large areas where no data has been collected making 
habitat modeling in those areas difficult. Our aim was 
to compare two methodologies for projecting moun-
tain lion habitat in areas where no data exists. We 
created a classical GLM alongside a random forest 
model and tested both for predictive strength using 
out-of-sample validation. Our first goal was to test 
which method created the best predictive map of sec-
ond order habitat selection by mountain lions across 
North America. This map could be used as a basis 
for estimating local and continental-scale abundance 
(Jędrzejewski et al. 2018) or to inform conservation 
strategies, such as corridor mapping (Winkel et  al. 
2023), determining the likeliness of successful recol-
onization (Yovovich et al. 2023), or predicting inter-
actions with rare prey species such as woodland cari-
bou as they expand northward due to climate change 
and new distributions of the mountain lion’s primary 
prey, deer (Odocoileus spp.; White et  al. 2020). By 
sampling multiple study areas across diverse ecore-
gions, we aimed to identify the most robust effects 
that different landscape traits have on mountain lion 
resource selection. Our second goal was to determine 
whether mountain lion habitat selection is consist-
ent across ecoregions at the continental scale. We 
employed out-of-sample validation to test whether 
our model could be used to accurately identify habi-
tat in un-sampled regions where intensive studies 
have not occurred, due to costs or other feasibility, or 
in areas of historic but currently unoccupied moun-
tain lion range (i.e., the eastern USA; Winkel et  al. 
2023, Yovovich et al. 2023).

Study area

We compiled mountain lion global positioning sys-
tem (GPS) location data from multiple state and 
federal agencies, universities, and non-governmen-
tal organizations (NGOs) across the USA and Can-
ada. These data span the desert southwest, coastal 



	 Landsc Ecol (2024) 39:106

1 3

106  Page 4 of 16

Vol:. (1234567890)

chaparral, montane, and alpine zones of the Rocky 
Mountains, and the temperate rain forests of the 
Pacific Northwest. Our study area is thus best rep-
resented as current North American mountain lion 
range excluding Mexico (Fig.  1; Hornocker and 
Negri 2010; Nielsen et al. 2015). Elevations in the 
study area ranged from sea level to over 4,200  m, 
annual precipitation ranged from 13 cm in southern 
California to > 500 cm in the Pacific Northwest, and 
land-use varied from highly urban areas to remote 
wilderness. As such, they cover much of the vari-
ability likely to be encountered by mountain lions 
across North America.

Methods

Overview

Both GLM and random forest compare actual animal 
locations to available or pseudo absence locations at 
relevant spatial scales to predict habitat use based on 
the variables contained in the model. At small scales, 
an RSF may show how an animal uses areas within 
its home range, but a small analytical scale may not 
be appropriate in predicting a species’ first or second 
order selection (i.e., selection by all animals across 
its full range, or selection of an entire population of 

Fig. 1   The study area, defined by historic mountain lion range in the USA and Canada (Nielsen et al. 2015; Hornocker and Negri 
2010). Study sites represent areas where GPS location data was collected between 2002 to 2020
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animals; Johnson 1980) (Boyce 2006, DeCesare et al. 
2014).

Both GLM and random forest methods can be used 
to map the predicted probability of use based upon 
disproportionate selection for habitat characteris-
tics. GLMs employ the maximum likelihood method 
of logistic regression to compare use to availabil-
ity, whereas random forest classification tallies votes 
from bootstrapped decision trees. First, a number of 
trees are created from bootstrapped data (commonly 
500 trees), then an observation is predicted by each 
tree. The number of trees predicting “used” points is 
divided by the number of trees predicting “available” 
points to achieve a probability (e.g., 50 votes for “use” 
of a particular point and 450 votes for non-use, or 
“available” point, would produce an 11% probability 
of use; Shoemaker et al. 2018) (Table 1).

Data

From 2002 onwards, researchers have deployed GPS 
collars on mountain lions which provide accurate loca-
tions and typically cover the diel period with multiple 
fixes per animal per day. For our analyses, we com-
piled 1.3 million location points from 476 collared 
animals from 20 different study sites across the USA 
and Canada (Table 2), and restricted the data to GPS 
collar locations from independent, resident adults 
using the CTMM package in R (Calabrese et al. 2016; 
R core team 2021). Most data did not include position 
dilution of precision or other measures of precision 
and we therefore did not remove points based on these 
metrics. We did, however, remove some locations we 
judged as clearly erroneous (i.e., with single point data 
errors > 100 miles from the previous point in < 4 h).

Table 1   Candidate landscape and human impact variables and 
hypothesized effects on mountain lion resource selection. A 
positive sign indicates a greater probability of selection asso-

ciated with that variable while negative sign indicates a lesser 
probability of selection associated with that variable

Covariate Data source (resolution) Hypothesized effect 
on resource selection

Published support of hypothesized 
effect

Biotic/landscape (bottom-up)
  Distance to water JRC Global Surface Water (30 m) - Dellinger et al. 2020
  Normalized difference vegeta-

tion index
Landsat 8 (30 m)  +  Logan and Sweanor 2001, Walters 

2001
  Gross primary productivity Landsat 8 (30 m)  +  Logan and Sweanor 2001, Walters 

2001
  Precipitation PERSIANN-CDR  +  Logan and Sweanor 2001, Walters 

2001
  Slope U.S. Geological Survey (30 m)  +  Zeller et al. 2017
  Forest cover MOD44Bv006 (250 m)  +  Robinson et al. 2015, Dellinger 

et al. 2020
  Shrub cover MOD44Bv006 (250 m)  +  Robinson et al. 2015, Dellinger 

et al. 2020
  Non-vegetation MOD44Bv006 (250 m) - Zeller et al. 2017, Dellinger et al. 

2020
  Elevation U.S. Geological Survey (30 m)  +  Robinson et al. 2015, Dellinger 

et al. 2020
  Aspect U.S. Geological Survey (30 m) South preferred Robinson et al. 2015

Human impact/competition (top-down)
  Roads impact Wildlife Conservation Society - Zeller et al. 2017, Dellinger et al. 

2020
  Land-use impact Wildlife Conservation Society 

(100 m)
- Robinson et al. 2015, Zeller et al. 

2017
  Infrastructure impact Wildlife Conservation Society 

(100 m)
- Robinson et al. 2015, Zeller et al. 

2017
  Population density U.S. Census Bureau (100 m) _ Dellinger et al. 2020
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Advances in technology have led to decreasing fix 
intervals in GPS data which increases autocorrela-
tion and can bias parameter estimates (Alston et  al. 
2023). However, large sample sizes and external 
validation counteract the problem of autocorrelation, 
especially in cases where the goal is prediction rather 
than inference (Northrup et al. 2013). Therefore, we 
did not filter the data for the purpose of counteracting 
autocorrelation but instead relied on the large sample 
size and a rigorous method of external validation. In 
addition, the bootstrapping step of the random forest 
acts as a thinning mechanism to decorrelate autocor-
related data (Breiman 2001).

Spatial covariates

Our goal was to create a predictive resource selec-
tion model as opposed to a more traditional test of 
competing hypotheses in a multi-model context. A 
complete list of all variables considered is shown in 
Table  1. Following ecological theory (Power 1992), 
we categorized covariates into two broad categories, 
which we called “bottom-up” or “top-down” effects.

Mountain lions depend on their prey which are 
tied to primary productivity (Walters 2001) so a 
main bottom-up driver will be primary productiv-
ity as represented by the normalized difference 
vegetation index (NDVI; Pettorelli et  al. 2005). 
NDVI is calculated from the ratio of red to near-
infrared (NIR) reflectance (NDVI = (NIR-RED)/
(NIR + RED) (Myneni et  al. 1995) and measures 
“greenness” of vegetation which is tied to digest-
ible energy for herbivores (Garroutte et  al. 2016). 
As an ambush predator that utilizes cover for 
hunting, structural habitat traits are important to 
a mountain lion’s ability to catch prey (Cristescu 
et al. 2019, Coon et al. 2020). We used several lay-
ers from MODIS (DiMiceli et  al. 2015) including 
forest, shrub cover, and non-vegetated areas. These 
layer values represent the proportion of the pixel at 
250  m resolution covered by that vegetation type. 
We acquired these data from satellite imagery using 
the Google Earth Engine platform (Gorelick et  al. 
2017). We also included other bottom-up covari-
ates representing abiotic landscape traits that might 
impact hunting success and other fitness, such 

Table 2   Summary table of 
GPS location data collected 
from 476 mountain lions 
from 20 study sites between 
the years 2002–2020. 
County and state or 
province abbreviation 
provided in parentheses

Study site Average 
fix interval 
(hours)

Num-
ber of 
animals

Number of fixes Average 
fixes per 
animal

Data timespan

1 (Santa Cruz, CA) 4.97 63 193,265 3067.7 2009–2020
2 (Teton, WY) 9.35 12 97,543 8128.58 2012–2016
3 (Clallam, WA) 4.92 8 26,311 3288.88 2018–2020
4 (Garfield, CO) 2.05 12 56,682 4723.5 2011–2013
5 (Orange, CA) 3.13 91 338,739 3722.41 2002–2016
6 (Sonoma, CA) 2.23 14 54,174 3869.57 2016–2020
7 (Mendocino, CA) 2.13 5 14,714 2942.8 2010–2012
8 (Siskiyou, CA) 0.78 14 228,249 16,303.5 2017–2020
9 (Columbia, WA) NA 29 39,514 1362.55 2009–2014
10 (Stevens, WA) 7.38 20 23,064 1153.2 2004–2008
11 (Okanogan, WA) NA 47 48,881 1040.02 2006–2014
12 (King, WA) 5.38 30 68,554 2285.13 2012–2017
13 (King, WA) 6.09 24 19,360 806.67 2003–2009
14 (Chouteau, MT) 7.26 5 3804 760.8 2006–2009
15 (Phillips, MT) NA 3 2369 789.67 2008–2009
16 (Phillips, MT) 5.23 7 8049 1149.86 2011–2015
17 (Kittitas, WA) 10.66 25 40,220 1608.8 2002–2008
18 (Powell, MT) NA 16 34,021 2126.31 2002–2006
19 (Yellowhead, AB) 1.52 7 27,924 3989.14 2017–2018
20 (Clearwater, AB) 4.76 49 47,864 976.82 2005–2017
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as aspect (converted from degrees to a continu-
ous measure using a cosine transformation), slope 
(degrees) and elevation.

Mountain lions are also impacted by top-down 
effects such as human values, impact and altera-
tions of the landscape (Dickson et  al. 2005, Wilm-
ers et al. 2013, Wolfe et al. 2015, Benson et al. 2019, 
2023) although some human-altered landscapes may 
be to their benefit (Coon et  al. 2019). Therefore, 
we included covariates measuring potential human 
impact (Table 1).

We used human density and several human impact 
layers produced by the Wildlife Conservation Society 
(2022) including roads, land-use, and infrastructure. 
These layers are a weighted calculation of impact 
based on multiple factors and utilize an exponential 
decay function to decrease the value of the impact at 
distance to the feature. For instance, the roads impact 
layer included weighted values scaled from the lowest 
impact which includes footpaths and cycle-ways to 
higher impact values for motorized roads and major 
highways (Wildlife Conservation Society 2022).

We standardized all variables using a Z transfor-
mation. To reduce the total number of candidate 
variables and to produce a single candidate set, we 
first screened variables for significance (p < 0.05) in 
univariate models (Hosmer Jr et  al. 2013). We then 
screened covariates for collinearity, removing cor-
related variables |> 0.8| from the candidate set based 
on lower relative univariate r2 value. We chose a high 
correlation threshold because overfitting is less of an 
issue in cases of prediction, especially when sample 
size is sufficient (Hawkins 2004; Steyerberg 2019). 
The result of this screening process was a set of can-
didate variables that we then used to model resource 
selection using the two methods (see below).

Resource selection modeling

To model second order selection, habitat traits within 
an animal’s home range are compared to the sur-
rounding landscape (Johnson 1980). In our model, 
used points were GPS locations for each mountain 
lion while available points were randomly generated 
pseudo absences. We used the adehabitatHR package 
in R for the following tasks (Calenge 2006; R core 
team 2021): 1) We set the spatial extent of available 
points specific to each study site by creating 99% 
adaptive kernel polygons using the combined GPS 

locations from all independent mountain lions that 
were marked with GPS collars in each research pro-
ject. Because research projects define study sites dif-
ferently and often in non-biologically relevant ways, 
it was important to create standardized available habi-
tat for each site. 2) We matched used and available 
points from each study site at a 1:1 ratio. We used the 
raster package in R to extract landscape (i.e., covari-
ate) values from the used and available points (Hij-
mans 2022; R core team 2021).

Generalized linear mixed model

To account for individual and geographical variation, 
we included individual animals and study sites as ran-
dom effects (Gillies et al. 2006). The model took the 
form for location i, animal j, and study area k:

where β1, β2, and β3 are covariate fixed effects and 
�jk accounts for random variation at the intercept for 
individual animals and study areas. We used the lme4 
package in R to fit this model (Bates et  al. 2015; R 
core team 2021).

Random forest model

We used the randomForest package in R (Liaw and 
Wiener 2002; R core team 2021) to build a random 
forest model using the same pool of habitat variables 
and used and available points as for the GLM above. 
Although random forest is well suited for large num-
bers of highly correlated variables (Breiman 2001), 
we chose to use the same pool of variables for greater 
comparability to the GLM. Following guidance in 
Probst et al. (2019), we tuned the model to 1000 trees 
and 6 variables at each split using the tuneRF func-
tion from the randomForest package.

Model validation and method comparison

We validated both models using internal and exter-
nal methods. We internally validated the models and 
examined their ability to correctly classify used and 
available points by calculating area under the receiver 
operating characteristic (AUC) curve in R (Spackman 
1989; R core team 2021). An AUC score of > 0.7 is 

Logit
{
Pr(yij = 1|xijk, �jk)

}
= �1 + �2x2ij + �3x3ij + �jk
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generally considered acceptable and a score of > 0.8 
is considered excellent (Hosmer Jr et  al. 2013). We 
tested the variable inflation factor (VIF) to ensure 
no two variables were excessively correlated (i.e., 
VIF < 5). Ecological data often contain dependence 
structures (i.e., correlations within individual ani-
mals or study sites), therefore non-random, blocked, 
cross-validation approaches should be used to validate 
the models more rigorously (Roberts et al. 2017). To 
accomplish this, we performed a leave-one-out (LOO) 
external validation by excluding each study site from 
the model and projecting the model to that same site 
to measure its predictive ability. We first reclassified 
the RSF into 10 equal area bins based on probability 
of use, and then summed the number of used points in 
each of 10 bins. We then conducted a Spearman’s rank 
correlation test to see if used points fell in the higher 
probability bins (Fielding and Bell 1997; Boyce et al. 
2002). We examined the output of the two models by 
comparing the variable importance for the random 
forest model and scaled and centered effect size for 
the GLM. Finally, we used the raster package in R to 
project the top model to all of the historic mountain 
lion range to create a probability map of mountain lion 
habitat (30 m cells; Hijmans 2022; R core team 2021).

Results

Candidate covariates

After initial screening, our final candidate set of covar-
iates included: distance to water, NDVI, slope, forest 
cover, shrub cover, non-vegetation, elevation, aspect, 
roads impact, land-use, infrastructure, and human den-
sity. Gross Primary Productivity was removed due to 
excessive correlation to NDVI.

Generalized linear model

In the final multivariate GLM, NDVI, slope, and 
shrub cover had positive effects on mountain lion 
resource selection while forest cover, elevation, road 
impact, infrastructure, non-vegetation, land-use, and 
population density had negative effects (Table  3). 
Distance to water also showed a negative effect, 
indicating a higher probability of use closer to water 
sources.

Random forest model

The random forest variable plots show similar 
effects to the GLM with habitat covariates exhib-
iting positive responses, and human-influence 
covariates generally exhibiting negative responses 
(Fig. 5). Interpreting the variable plots from the ran-
dom forest model is more complex as compared to 
the GLM beta estimates, due to the inherent non-
linearity of random forest. For example, mountain 
lions generally showed higher probability of use for 
areas at low elevations, but probability declines at 
very low elevations (i.e.at 0 elevation or sea level). 
Mountain lions exhibited a lower probability of use 
for areas lacking footpaths or trails, higher probabil-
ity of use for low-impact roads (i.e. footpaths and 
dirt roads), and then again a lower probability of use 
for high-impact roads (i.e. paved roads and high-
ways), aligning well for what is known about their 
behavior (e.g. Dickson et al. 2005). Most variables 
exhibited a “humped” shape (e.g. NDVI, slope, for-
est, non-vegetated area, and shrub cover), indicating 
that mountain lions varied their probability of use 
across the range of values for these variables, rather 
than exhibited a single consistent relationship and 
probability of use.

Table 3   Beta estimates, standard error, z value and p value for 
the final general linear model of resource selection of moun-
tain lions from 476 individuals and 20 study sites from years 
2002–2020

Est S.E z val p

(Intercept) -0.212 0.102 -2.070  < 0.039
Normalized-difference 

vegetation index
0.652 0.003 217.272  < 0.000

Slope 0.100 0.002 65.405  < 0.000
Distance to water -0.160 0.002 -101.574  < 0.000
Aspect -0.078 0.001 -57.857  < 0.000
Elevation -0.568 0.003 -170.234  < 0.000
Roads impact -0.032 0.002 -19.049  < 0.000
Forest -0.093 0.002 -45.160  < 0.000
Infrastructure -0.054 0.002 -29.284  < 0.000
Non-vegetated area -0.163 0.003 -61.577  < 0.000
Shrub cover 0.117 0.003 45.634  < 0.000
Human population 

density
-0.395 0.007 -57.760  < 0.000

Land-use impact -0.535 0.002 -238.894  < 0.000
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Comparative analysis of GLM and random forest 
models

The random forest outperformed the GLM, with AUC 
values of 0.68 for the GLM and 0.94 for the random 
forest (Fig. 2). The mean Spearman’s rho score from 
our LOO validation was 0.65 for the GLM and 0.93 
for the random forest (Fig. 3). Within the GLM frame-
work, we found support for all hypothesized effects 
except elevation and forest (Table  3). We predicted 
elevation and forest cover would show positive effects 
on mountain lion selection however both showed neg-
ative effects on probability of use. Random forest par-
tial dependency variable plots show similar responses 

of our selected variables (Fig.  5). Probability of use 
declines overall with increased elevation in both mod-
els. Probability of use increases slightly with forest 
cover but declines near the maximum values of per-
cent forest per pixel. This is corroborated by the nega-
tive effect for forest cover in the GLM.

Variable importance and effect sizes

The random forest and GLM show similar ranking 
of variable importance and effect size (Fig.  4). Both 
show elevation and NDVI as the most important vari-
ables. A notable separation between the models occurs 

Fig. 2   A comparison of internal validation method using ROC curves for the GLM and random forest resource selection models for 
476 mountain lions from data collected across 20 study sites in the USA and Canada between 2002 and 2020

Fig. 3   Comparison of 
leave-one-out external 
validation of GLM and ran-
dom forest mountain lion 
resource selection models 
from 20 separate sites (see 
also Fig. 1) between 2002 
to 2020
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with the variables, land-use impact and human popu-
lation density. These variables exhibit the third and 
fourth largest effect sizes in the GLM but are ranked 
much lower (i.e. tenth and eleventh) by the random 
forest (Fig. 5).

Model projection

We projected the random forest model to cre-
ate a map depicting probable mountain lion use 
or occurrence (Fig.  6). Higher probability areas 
appear closely tied to rugged, wilderness areas and 
away from flat farmland and urban areas. The east-
ern U.S. is characterized by an abundance of high-
probability habitat.

Discussion

In predicting continental-scale second-order resource 
selection of a cryptic carnivore, random forest 
models (AUC = 0.94) outperformed GLM mod-
els (AUC = 0.68), highlighting the strength of ran-
dom forest methods in predicting non-linear, com-
plex interactions characteristic of animal habitat use 
and selection. Mountain lion resource selection was 
positively associated with bottom-up factors such as 
NDVI and shrub cover, and negative associations with 
all top-down, anthropogenic factors, including human 
population density, land-use and infrastructure. Our 

LOO analyses highlighted the strength of our model 
in predicting mountain lion habitat selection across 
ecoregions and in novel areas into which they are 
expanding, as well as their potential use of historic 
range currently unoccupied. Our model provides a 
powerful tool to aid conservation practitioners in 
transcending the current limitation of state- or pro-
vincial-scale assessments of the species, and one that 
supports discussions and analyses of continent-wide, 
cross-jurisdictional conservation and management of 
mountain lions (Elbroch et al. 2022).

Discrepancies between GLM and random forest 
models

We found general agreement between the random 
forest and GLM models, with regards to the relative 
importance of the various covariates tested (Fig. 4). 
The added flexibility of random forest models, 
however, provided deeper insights when interpret-
ing the influence of covariates on habitat selection. 
For example, where the GLM only revealed a small 
negative effect associated with roads, the random 
forest showed a stronger and more complex relation-
ship; mountain lions increased their selection for 
low-impact roads such as footpaths but decreased 
selection for high-impact roads, such as paved 
motorways and highways (Fig. 5). The random for-
est also showed slightly increased selection for for-
est cover with decreased selection for the maximum 
values of forest cover. This is likely due to mountain 

Fig. 4   A comparison of variable importance from the ran-
dom forest model with standardized, absolute value, effect size 
from the GLM for 476 mountain lions collared across 20 sites 

between 2002–2020. The ordering of the variables in the GLM 
is matched to the random forest for comparison
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lions favoring mixed vegetation and partially open 
canopies where prey and hunting opportunities are 
higher.

Nevertheless, when comparing the effect sizes of 
the GLM with the variable importance ranking of the 
random forest, land-use impact and human population 
density ranked very differently (Fig.  4). These vari-
ables showed large effect sizes in the GLM but low 
importance in the random forest, due to differences 
in model structure. The GLM is bound by linearity 
and requires interaction effects between predictors 
to be specified, whereas random forest allows for 
non-linear relationships and inherently accounts for 
interactions among features in the construction of 
decision trees. A variable that appears less impor-
tant in a GLM might be identified as more important 
in random forest due to its contribution to reducing 
prediction error when used in conjunction with other 
variables.

Addressing model overfitting and external validation

As with other complex models, there is risk of ran-
dom forest overfitting predictive models. This can 
be examined with rigorous external validation as 
performed here with the “leave-one-out” method. 
As stated previously, ecological data often contain 
dependence structures so “blocked” external valida-
tion is needed; in this case, leaving out each study 
site, some of which represented entire ecoregions. 
For example, the model performed well at predict-
ing mountain lion habitat use in the desert southwest, 
even when data from the desert southwest was omit-
ted from model building. This suggests that the model 
did not overfit and is transferable to regions where 
no data are available. In addition, an advantage of a 
large-scale analysis such as this is that the problem of 
overfitting is mitigated by using data spanning a range 
of environmental conditions. An RSF built from one 

Fig. 6   Random forest derived resource selection function depicting predicted continent-wide mountain lion habitat suitability in 
North America from data collected from 476 mountain lions between 2002–2020



Landsc Ecol (2024) 39:106	

1 3

Page 13 of 16  106

Vol.: (0123456789)

study site may overfit to unique aspects of that region 
whereas an RSF built from multiple sites will better 
capture the true habitat selection behavior of the spe-
cies and can more confidently be extrapolated to other 
areas once externally validated.

Implications for conservation and management

Our model predicted an abundance of high-quality 
mountain lion habitat in their historic range in the 
eastern USA and Canada. In fact, our predictive 
map would suggest that portions of the eastern USA 
are superior habitat in comparison to the west. This 
is likely due to NDVI being the strongest driver of 
mountain lion habitat selection in our model and that 
the eastern USA contains very high relative NDVI 
values. Nevertheless, even considering the current 
human footprint in the more densely populated east-
ern USA, our model supports other analyses based 
on expert opinion (e.g., Winkel et al. 2023, Yovovich 
et  al. 2023) which predict significant mountain lion 
habitat beyond their current range today.

Limitations and future directions

Our analysis lays the groundwork for population pre-
diction, utilizing a habitat-based approach to estimate 
mountain lion densities (e.g. Boyce and McDonald 
1999). By establishing a correlation between habitat and 
densities, this model can be used to create defensible 
assessments of current mountain lion populations and 
holds the potential to project future densities in regions 
where mountain lions may recolonize. Moreover, this 
understanding of habitat can be utilized in formulating 
effective management plans tailored to specific jurisdic-
tions (e.g. harvest setting when determined by habitat-
based abundance estimates; Beausoleil et  al. 2013). 
Leveraging the habitat map, hunted areas can be strate-
gically categorized into low, medium, and high habitat 
quality zones, facilitating the development of targeted 
management strategies for conservation.

Our model does not assess the impacts of land-
scape connectivity on potential habitat selection. 
Large highways are an impediment for mountain lion 
movement (Ernest et al. 2014; Yovovich et al. 2023), 
and the eastern U.S., with its dense highway system 
may prove to be an obstacle for mountain lions try-
ing to reach potential habitat. Although our projected 
model does not measure connectivity explicitly, it 

can be used as a base layer for connectivity modeling 
(Chetkiewicz and Boyce 2009). Zeller et  al (2018) 
showed that RSF models outperform other layers 
when converted to resistance layers from relative 
probability of use.

Conclusion

Our study represents an advancement in the field of 
habitat selection modeling, particularly in the con-
text of large carnivore conservation. By comparing 
the performance of GLM and random forest models 
in predicting habitat selection of mountain lions at a 
continental scale, we demonstrated the superiority of 
machine learning techniques in capturing the com-
plexity of habitat selection behavior. The higher pre-
dictive accuracy of the random forest model under-
scores its potential utility in predicting habitat for 
mountain lions in unoccupied areas or regions lacking 
local data. These findings contribute to our under-
standing of mountain lion ecology and have broader 
implications for wildlife management and conser-
vation efforts on continental scales. Our model can 
serve as a valuable tool for informing conservation 
strategies, estimating metapopulation abundance, and 
facilitating habitat restoration efforts for mountain 
lions and other wide-ranging carnivores. Addition-
ally, our study highlights the importance of collabora-
tive data sharing and integrating advanced machine-
learning techniques into ecological research.
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