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Executive Summary

Over the past two decades, the cognitive development of children across much of the
developed world has stalled and, in many domains, reversed. Literacy, numeracy,
attention, and higher-order reasoning have declined despite increased school attendance
and expanded public investment.

One major structural change distinguishes today’s classrooms from those of prior
generations: the rapid and largely unregulated expansion of educational technology
(EdTech). Digital devices now occupy a significant share of instructional time, assessment,
homework, and student attention.

The available evidence (from international assessments, large-scale academic studies, and
meta-analyses) shows that increased classroom screen exposure is generally associated
with weaker learning outcomes, not stronger ones. In narrow circumstances (e.g., tightly
constrained adaptive practice and remediation), digital tools can support surface-level skill
acquisition, but in most core academic contexts screens slow learning, reduce depth of
understanding, and weaken retention.

This is not primarily a question of teacher quality, student motivation, or access to devices.
It reflects a structural mismatch between how human cognition develops and how digital
platforms are engineered to capture attention, fragment focus, and accelerate task
switching.

If state policy continues to incentivize large-scale digital adoption without demanding
independent efficacy evidence, privacy protections, and developmental safeguards, it risks
compounding long-term educational and workforce harm.

1. What Has Changed

For most of the twentieth century, cognitive performance steadily improved across
generations, driven largely by expanding access to formal education and improved
instructional quality!. Beginning in the mid-2000s, this trend plateaued then reversed in
many Western nations. Multiple indicators now show stagnation or decline in literacy,
numeracy, problem solving, creativity, and general cognitive performance among
adolescents*S,



At the same time, classroom environments underwent a rapid digital transformation.
One-to-one device programs, cloud platforms, online assessments, adaptive software, and
constant connectivity became standard practice in many districts - often without
independent longitudinal validation.

Over half of our children now use a computer at school for one to four hours each day, and
a full quarter spend more than four hours on screens during a typical seven-hour school
day’. Unfortunately, studies suggest that less than half of this time is spent actually
learning, with students off-task for up to 38 minutes of every hour when on classroom

devices®.

2. Evidence from International Assessments
PISA

The Programme for International Student Assessment (PISA) tracks the academic
performance of 15-year-olds across dozens of countries. When students self-report
classroom computer use, higher daily screen exposure consistently corresponds to lower
scores in reading, mathematics, and science. The relationship is monotonic: more screen
time, lower performance.
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Apparent small advantages sometimes reported for minimal computer exposure disappear
once test mode effects are accounted for. When assessments shifted from paper to digital
delivery, students with limited device familiarity experienced artificial score penalties,
creating the illusion of benefit for moderate screen users rather than genuine learning
gains’.

TIMSS

The Trends in International Mathematics and Science Study (TIMSS) shows a similar
pattern among younger students. Frequent in-class computer use correlates with



significantly lower math and science performance across both high-income and

middle-income countries.

TIMSS: ALL COUNTRIES
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The Progress in International Reading Literacy Study (PIRLS) historically shows weaker
reading performance among students with high classroom computer use. More recent U.S.

data confirm that even modest daily digital exposure is associated with lower reading

comprehension!?,
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Collectively, these assessments involve millions of students over decades and converge on
the same conclusion: heavy classroom screen exposure is not improving learning outcomes

at scale.

3. Evidence from Meta-Analysis



Meta-analyses aggregate hundreds of individual studies to estimate overall impact. Most
EdTech meta-analyses report small positive effect sizes. However, education research
systematically inflates positive effects because comparison conditions vary widely and
often lack rigorous baselines.

When educational interventions are benchmarked against established instructional
methods, meaningful impact typically begins around moderate effect thresholds
(approximately 0.40 —0.50)!'". Most digital interventions fall below this range, particularly
in:

e One-to-one device programs

o Fully online instruction

e General classroom technology integration

e Programs targeting disadvantaged populations

Only narrowly constrained tools (such as adaptive drills for foundational skills and targeted
remediation) consistently approach meaningful gains. These tools succeed because they
automate repetition in well-defined domains, not because they enhance deep learning.

To assess practical significance, effect sizes must be interpreted relative to a meaningful
benchmark rather than an arbitrary zero. Large-scale syntheses of education research
indicate that the average impact of ordinary classroom instruction is approximately +0.42!!.
An intervention that falls below this threshold does not meaningfully outperform standard
practice, even if its effect size is technically positive. In practical terms, schools should not
invest in tools that perform worse than the average classroom already does without them.

For clarity, the table below presents effect sizes re-centered against this instructional
benchmark to show whether each category of educational technology exceeds or
underperforms typical instructional impact!! 12,

# Of Meta- # of Research Effect Size

Analyses Studies (Cohens D)
General Learning 398 21,155 -0.13 (SE=0.09)
SPECIFIC MODERATORS
Online/Distance Learning 42 1,767 -0.22 (SE=0.06)
Primary Years 27 781 -0.03 (SE=0.04)
Secondary Years 10 745 -0.11 (SE=0.05)
Intelligent Tutoring Systems 5 283 +0.10 (SE=0.03)
1-to-1 Laptops 3 162 -0.30 (SE=0.07)
Disadvantaged Students 4 195 -0.26 (SE=0.02)




Literacy 31 1,109 -0.09 (SE=0.15)
Mathematics 41 3,479 -0.09 (SE=0.13)
Science 10 547 -0.18 (SE=0.19)
Learning Disorders 9 245 +0.05 (SE=0.08)

NOTE: Reported effect sizes from published meta-analyses have been re-centered relative to the estimated
average impact of typical classroom instruction (+0.42). Values shown represent the difference between each
intervention s effect and this instructional benchmark (Adjusted Effect = Reported d — 0.42). This does not
alter the underlying study results; it clarifies whether an intervention meaningfully exceeds, matches, or
underperforms ordinary instructional impact.

Interpreted this way, most general-use educational technologies perform below the
effectiveness of ordinary classroom instruction, while only narrowly constrained adaptive
tools modestly exceed baseline impact.

4. Mode Effects: Reading and Writing

Independent research consistently shows that reading comprehension and retention are
stronger on paper than on screens, particularly for complex or extended texts. Spatial
stability, reduced scrolling, and embodied interaction support memory formation and

comprehension'?.
# Of Meta- | # of Research | Effect Size
Analyses Studies (Cohen’s D)
Reading Comprehension | 10 377 -0.16 (SE=0.05)
SPECIFIC MODERATORS
Adult Supports 1 7 -0.22 (SE=0.22)
Adult vs Digital Supports | 1 10 -0.22 (SE=0.07)

NOTE: All studies compare screens to hard-copy texts, meaning the baseline of ‘reading from paper’is 0.00.

Similarly, handwritten note-taking reliably outperforms laptop note-taking for long-term
learning. Typing encourages verbatim transcription and shallow processing; handwriting
forces summarization, organization, and conceptual encoding'?.

# Of Meta-|# of Research | Effect Size
Analyses Studies (Cohen’s D)
General Learning 4 238 -0.21 (SE=0.04)
SPECIFIC MODERATORS
Allowed to Review Notes 1 9 -0.42 (SE=0.07)
Class Length: >30min 1 5 -0.58 (SE=0.01)
NOTE: All studies compare typing to handwriting, meaning the baseline of ‘handwritten notes ”is 0.00.




These effects are not marginal curiosities. They directly affect how students process
information across subjects and grade levels.

5. Why Screens Undermine Learning: A Core Mechanism

Human attention systems evolved to sustain focus on a single task at a time. The prefrontal
control system cannot reliably manage competing goal states without significant
performance costs'>. When attention is repeatedly interrupted, three predictable costs
emerge:

1. Time loss from task switching overhead!®.

2. Higher error rates from cognitive interference!’.

3. Weaker memory formation as learning shifts from deep encoding toward
habit-based processing!®.

Digital platforms are optimized for rapid switching, novelty, and continuous engagement
capture. Even when used for academic tasks, they cue the same behavioral patterns
students practice during recreational screen use: frequent checking, rapid scrolling, and
multitasking.

As aresult, screens structurally train attentional habits that conflict with sustained learning.
This is not a matter of discipline or willpower; it is a function of repeated conditioning.

6. State Implications
Sustained declines in cognitive skill development have downstream consequences for:
o Workforce adaptability and productivity
e Scientific and technological innovation
e Civic reasoning and institutional trust
o Economic competitiveness'’
 Public health and wellbeing'®

Education policy shapes long-term human capital. Decisions made today will influence
national capacity for decades.



Conclusion

This is not a debate about rejecting technology. It is a question of aligning educational tools
with how human learning actually works. Evidence indicates that indiscriminate digital
expansion has weakened learning environments rather than strengthened them'2.

State policy can restore balance by demanding evidence, protecting children’s
developmental needs, and ensuring that innovation serves learning rather than attention
capture.

Our responsibility is not to maximize screen exposure, but to maximize the cognitive
capacity and long-term flourishing of the next generation.
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