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Executive Summary 

Over the past two decades, the cognitive development of children across much of the 

developed world has stalled and, in many domains, reversed.  Literacy, numeracy, 

attention, and higher-order reasoning have declined despite increased school attendance 

and expanded public investment. 

One major structural change distinguishes today’s classrooms from those of prior 

generations: the rapid and largely unregulated expansion of educational technology 

(EdTech).  Digital devices now occupy a significant share of instructional time, assessment, 

homework, and student attention. 

The available evidence (from international assessments, large-scale academic studies, and 

meta-analyses) shows that increased classroom screen exposure is generally associated 

with weaker learning outcomes, not stronger ones.  In narrow circumstances (e.g., tightly 

constrained adaptive practice and remediation), digital tools can support surface-level skill 

acquisition, but in most core academic contexts screens slow learning, reduce depth of 

understanding, and weaken retention. 

This is not primarily a question of teacher quality, student motivation, or access to devices.  

It reflects a structural mismatch between how human cognition develops and how digital 

platforms are engineered to capture attention, fragment focus, and accelerate task 

switching. 

If state policy continues to incentivize large-scale digital adoption without demanding 

independent efficacy evidence, privacy protections, and developmental safeguards, it risks 

compounding long-term educational and workforce harm. 

 

1. What Has Changed 

For most of the twentieth century, cognitive performance steadily improved across 

generations, driven largely by expanding access to formal education and improved 

instructional quality1.  Beginning in the mid-2000s, this trend plateaued then reversed in 

many Western nations.  Multiple indicators now show stagnation or decline in literacy, 

numeracy, problem solving, creativity, and general cognitive performance among 

adolescents2-6. 



At the same time, classroom environments underwent a rapid digital transformation. 

One-to-one device programs, cloud platforms, online assessments, adaptive software, and 

constant connectivity became standard practice in many districts - often without 

independent longitudinal validation. 

Over half of our children now use a computer at school for one to four hours each day, and 

a full quarter spend more than four hours on screens during a typical seven-hour school 

day7.  Unfortunately, studies suggest that less than half of this time is spent actually 

learning, with students off-task for up to 38 minutes of every hour when on classroom 

devices8. 

 

2. Evidence from International Assessments 

PISA 

The Programme for International Student Assessment (PISA) tracks the academic 

performance of 15-year-olds across dozens of countries. When students self-report 

classroom computer use, higher daily screen exposure consistently corresponds to lower 

scores in reading, mathematics, and science. The relationship is monotonic: more screen 

time, lower performance. 

 

Apparent small advantages sometimes reported for minimal computer exposure disappear 

once test mode effects are accounted for.  When assessments shifted from paper to digital 

delivery, students with limited device familiarity experienced artificial score penalties, 

creating the illusion of benefit for moderate screen users rather than genuine learning 

gains9. 

 

TIMSS 

The Trends in International Mathematics and Science Study (TIMSS) shows a similar 

pattern among younger students. Frequent in-class computer use correlates with 



significantly lower math and science performance across both high-income and 

middle-income countries. 

 

PIRLS 

The Progress in International Reading Literacy Study (PIRLS) historically shows weaker 

reading performance among students with high classroom computer use. More recent U.S. 

data confirm that even modest daily digital exposure is associated with lower reading 

comprehension10. 

 

Collectively, these assessments involve millions of students over decades and converge on 

the same conclusion: heavy classroom screen exposure is not improving learning outcomes 

at scale. 

 

3. Evidence from Meta-Analysis 



Meta-analyses aggregate hundreds of individual studies to estimate overall impact. Most 

EdTech meta-analyses report small positive effect sizes. However, education research 

systematically inflates positive effects because comparison conditions vary widely and 

often lack rigorous baselines. 

When educational interventions are benchmarked against established instructional 

methods, meaningful impact typically begins around moderate effect thresholds 

(approximately 0.40 – 0.50)11.  Most digital interventions fall below this range, particularly 

in: 

• One-to-one device programs 

• Fully online instruction 

• General classroom technology integration 

• Programs targeting disadvantaged populations 

Only narrowly constrained tools (such as adaptive drills for foundational skills and targeted 

remediation) consistently approach meaningful gains. These tools succeed because they 

automate repetition in well-defined domains, not because they enhance deep learning. 

To assess practical significance, effect sizes must be interpreted relative to a meaningful 

benchmark rather than an arbitrary zero. Large-scale syntheses of education research 

indicate that the average impact of ordinary classroom instruction is approximately +0.4211. 

An intervention that falls below this threshold does not meaningfully outperform standard 

practice, even if its effect size is technically positive. In practical terms, schools should not 

invest in tools that perform worse than the average classroom already does without them. 

For clarity, the table below presents effect sizes re-centered against this instructional 

benchmark to show whether each category of educational technology exceeds or 

underperforms typical instructional impact11, 12. 

 

 # Of Meta-

Analyses 

# of Research 

Studies 

Effect Size 

(Cohen’s D) 

General Learning 398 21,155 -0.13 (SE=0.09) 

SPECIFIC MODERATORS 

Online/Distance Learning  42 1,767 -0.22 (SE=0.06) 

Primary Years 27 781 -0.03 (SE=0.04) 

Secondary Years 10 745 -0.11 (SE=0.05) 

Intelligent Tutoring Systems 5 283 +0.10 (SE=0.03) 

1-to-1 Laptops 3 162 -0.30 (SE=0.07) 

Disadvantaged Students 4 195 -0.26 (SE=0.02) 



Literacy 31 1,109 -0.09 (SE=0.15) 

Mathematics 41 3,479 -0.09 (SE=0.13) 

Science 10 547 -0.18 (SE=0.19) 

Learning Disorders 9 245 +0.05 (SE=0.08) 
NOTE: Reported effect sizes from published meta-analyses have been re-centered relative to the estimated 

average impact of typical classroom instruction (+0.42). Values shown represent the difference between each 

intervention’s effect and this instructional benchmark (Adjusted Effect = Reported d – 0.42). This does not 

alter the underlying study results; it clarifies whether an intervention meaningfully exceeds, matches, or 

underperforms ordinary instructional impact. 

 

Interpreted this way, most general-use educational technologies perform below the 

effectiveness of ordinary classroom instruction, while only narrowly constrained adaptive 

tools modestly exceed baseline impact. 

 

4. Mode Effects: Reading and Writing 

Independent research consistently shows that reading comprehension and retention are 

stronger on paper than on screens, particularly for complex or extended texts.  Spatial 

stability, reduced scrolling, and embodied interaction support memory formation and 

comprehension12. 

 # Of Meta-

Analyses 

# of Research 

Studies 

Effect Size 

(Cohen’s D) 

Reading Comprehension 10 377 -0.16 (SE=0.05) 

SPECIFIC MODERATORS 

Adult Supports 1 7 -0.22 (SE=0.22) 

Adult vs Digital Supports 1 10 -0.22 (SE=0.07) 
NOTE: All studies compare screens to hard-copy texts, meaning the baseline of ‘reading from paper’ is 0.00. 

 

Similarly, handwritten note-taking reliably outperforms laptop note-taking for long-term 

learning.  Typing encourages verbatim transcription and shallow processing; handwriting 

forces summarization, organization, and conceptual encoding12. 

 # Of Meta-

Analyses 

# of Research 

Studies 

Effect Size 

(Cohen’s D) 

General Learning 4 238 -0.21 (SE=0.04) 

SPECIFIC MODERATORS 

Allowed to Review Notes 1 9 -0.42 (SE=0.07) 

Class Length: >30min 1 5 -0.58 (SE=0.01) 
NOTE: All studies compare typing  to handwriting, meaning the baseline of ‘handwritten notes’’ is 0.00. 

 



These effects are not marginal curiosities.  They directly affect how students process 

information across subjects and grade levels. 

 

5. Why Screens Undermine Learning: A Core Mechanism 

Human attention systems evolved to sustain focus on a single task at a time. The prefrontal 

control system cannot reliably manage competing goal states without significant 

performance costs13.  When attention is repeatedly interrupted, three predictable costs 

emerge: 

1. Time loss from task switching overhead14. 

2. Higher error rates from cognitive interference15. 

3. Weaker memory formation as learning shifts from deep encoding toward 

habit-based processing16. 

Digital platforms are optimized for rapid switching, novelty, and continuous engagement 

capture.  Even when used for academic tasks, they cue the same behavioral patterns 

students practice during recreational screen use: frequent checking, rapid scrolling, and 

multitasking. 

As a result, screens structurally train attentional habits that conflict with sustained learning. 

This is not a matter of discipline or willpower; it is a function of repeated conditioning. 

 

6. State Implications 

Sustained declines in cognitive skill development have downstream consequences for: 

• Workforce adaptability and productivity 

• Scientific and technological innovation 

• Civic reasoning and institutional trust 

• Economic competitiveness17 

• Public health and wellbeing18 

Education policy shapes long-term human capital. Decisions made today will influence 

national capacity for decades. 

 

 



Conclusion 

This is not a debate about rejecting technology. It is a question of aligning educational tools 

with how human learning actually works. Evidence indicates that indiscriminate digital 

expansion has weakened learning environments rather than strengthened them12. 

State policy can restore balance by demanding evidence, protecting children’s 

developmental needs, and ensuring that innovation serves learning rather than attention 

capture. 

Our responsibility is not to maximize screen exposure, but to maximize the cognitive 

capacity and long-term flourishing of the next generation. 
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