Neonicotinoid Education & Research Heather Darby, Agronomist University of Vermont Extension

Impact of Treated Seed on Plant Stands

• Borderview Research Farm: 2023, 2024, 2025

- Replicated trial
- Two treatments: treated and untreated
- Six planting dates
- Soil & crop measureme

	the second se		
Planting date	Planting da		
number			
PD 1	10-May		
PD 2	16-May		
PD 3	26-May		
PD 4	1-June		
PD 5	9-June		
PD 6	16-June		

Impact of Treated Seed on Plant Stands

No statistical difference in corn populations between treated and untreated corn seed.

Impact of Treated Seed on Yields

No statistical difference in corn yields between treated and untreated corn seed.

Seed corn maggot flight recorded on 8-Jun. Did this impact the corn yield at this planting date?

Corn Seed Maggot Flies

Impact of Treated Seed on Plant Stands

On-farm sites (one planting date) observes some differences in populations; however, related to bird damage and dry conditions at planting.

Impact of Treated Seed on Yields

What about planting date 5? This is a 4-ton yield difference!

Seed corn maggot flight recorded on 8-Jun. Did this impact the corn yield at this planting date?

Corn Seed Maggot Flies

Distribution of yld35dm

Impact of Treated Seed on Plant Stands

No statistical difference in corn populations between treated and untreated corn seed.

Clothianidin in the Soil over a Year

Replicate						
Rep1	Rep 2	Rep 3	Rep 4	-Average [£]		
		ug kg ⁻¹				
<2.0	<2.0	<2.0	<2.0	<2.0		
6.60	2.70	<2.0	8.60	5.97		
< 2.0	< 2.0	2 30	2.70	2.50		
~2.0	~2.0	2.00	2.10	2.00		
19.80	11.40	2.00	2.00	8.80		
<2.0	2.30	<2.0	<2.0	2.30		
2.20	<2.0	<2.0	<2.0	2.20		
<2.0	3.60	<2.0	2.70	3.15		
<2.0	<2.0	<2.0	<2.0	<2.0		
<2.0	<2.0	<2.0	<2.0	<2.0		

Long-Term Use of Clothianidin and Soil Residues

	Micro Wa				
North Surface	North Tile	South Tile	Average (n=16) [£]	Detectable limit [¥]	
	ug l	Kg ⁻¹			% of samples
3.78	4.60	3.70	3.70	3.94	88
5.40	5.65	3.15	4.45	4.66	44
6.00	3.25	3.35	<2.0	3.30	44
5.80	2.67	2.55	<2.0	2.61	44

	_	Micro Watershed [†]					
		North Surface	North Tile	South Tile	South Surface	Average (n=16) [£]	Detectable limit [¥]
	_		ug k		% of samples		
2023 Preplant (13-A)	pr)						
	0.0"-2.5"	3.78	4.60	3.70	3.70	3.94	88
	2.5"-6.0"	5.40	5.65	3.15	4.45	4.66	44
2024 Preplant (26-Apr)							
	0.0"-2.5"	6.00	3.25	3.35	<2.0	3.30	44
	2.5"-6.0"	5.80	2.67	2.55	<2.0	2.61	44

Scope of Work: VAAFM & LCBP

• **Discovery Acres**

 Assess the impact of quality (N&P).

 Neonicotinoid movement in surface and subsurface water.

management methods on water

Existing Ditches

Concentration of clothianidin in Tile & Surface water post corn planting, St. Albans, VT, 2023.

Samples with concentration greater than reporting limit (0.0500 ug/L).

*This is not the loading rate just concentrations from single samples taken from surface or tile when there was water moving off from surface or out of the tiles.

Loading of clothianidin in Tile & Surface water post corn planting, St. Albans, VT, 2023.

• Tile • Surface

Record rainfall in 2023

Levels higher from surface runoff & detection 47% of the time. increase infiltration rate

Tile less detection -43% of samples had detectable levels.

Planter Dust

r parameters at the time of dust collection at each on-farm location in Vermont, 2024.

Soil T	Soil moisture (%)	Temperature (°F)	Humidity (%)	Wind direction	Wind speed (mph)	Collection date	
Missisquoi loamy sand 3-8% slo	7.30	64.0	41.2	SE	7.4-9.4	20-May	
Missisquoi loamy sand 0-3% slo	41.0	64.7	72.3	E	4.5-6.5	11-May	
Copake fine sandy loam 2-8% slo	36.0	66.0	34.4	SW	2.5-3.6	13-May	
Cabot Silt Loam 3-8%, Westbury & 8-15%	18.1	62.4	56.5	W	5.1-6.3	16-May	
Covington and Panton silty clay,	46.6	88.0	47.0	E-SE	0.4-4.5	21-May	
ection, humidity and temperature were collected with a HoldPeak® digital anemometer. Soil moisture was take							

al Soil Moisture Meter with Probe. Model DSMM500.

ype

- ope Wareham loamy fine sand
- ppe & 25-60% slope
- ope
- y stony fine sandy loam 3-8%
- 0-3%
- en with General Tools

Neonicotinoid Dust Captured at On-Farm Locations ¥<0.43 is below the detectable limits.

Location (city)	Collection height (cm)	Clothianidin (ng cm ⁻²)	Thiamethoxam (ng cm ⁻²)
	200	<0.43 [¥]	<0.43
Highgate	30	<0.43	<0.43
	0	<0.43	<0.43
	200	<0.43	<0.43
Swanton	30	<0.43	<0.43
	0	<0.43	<0.43
	200	<0.43	<0.43
St. Albans	30	<0.43	<0.43
	0	<0.43	<0.43
	200	<0.43	<0.43
Franklin	30	<0.43	<0.43
	0	<0.43	<0.43
Middlebury	200	<0.43	<0.43
	30	<0.43	<0.43
	0	0.7	<0.43

Dust Collection – Direct from Planter

Fluency Agents

Fluency agents often used to help seed flow through the planter.

Fluency agents thought to be abrasive to the seed coatings/treatment.

Alternative fluency agents developed to reduce "dust-off" during planting.

DUST – Soybean based product

Bayer Fluency Agent – Polyethylene wax based

Fluency Agents

Graphite

Seed Brand

Conservation Practices and Seedcorn Maggot

Table 1. Corn cropping system specifics for corn yield and soil health, Alburgh, VT, 2023. **Treatment abbreviation** Management method Tilled Τ No-till NT BM Broadcast manure Broadcast manure, incorporated with tillage TM Injected manure IM Cover crop, tilled CCT CCNT Cover crop + no-till Cover crop + broadcast manure CCBM Cover crop + broadcast manure, incorporated with tillage CCTM Cover crop + injected manure CCIM

Study to evaluate if practices associated with conservation increase risk of seedcorn maggot. Impact of Tillage & Manure

Impact of Cover Crops

	0.50		
	0.00		
	0.45		
	0.40		
	0.35		
(%)	0.00		
e Se	0.30		
ama	0.25		
ΔD	0.20		
5 S			
	0.15		
	0.10		
	0.05		
	0.00		
		No CC	

