State of IPM in Vermont Apple Orchards VT Senate Committee on Agriculture

TERENCE BRADSHAW, PH.D. UVM EXTENSION FRUIT SPECIALIST

APRIL 18, 2024

Vermont Apples: 2nd Largest Specialty Crop

Apples are grown on 1700 acres in VT

- \$18.5 M direct farmgate sales 2017.
- Est. \$30 M total revenue with value-added
 - ~60 orchards active with VTFGA
- Orchards located in every county but Essex

Year	bearing acres	yield/ acre (bu)	total production (bu)	utilized production	utilized price/ bu	value of utilized production \$1,000	% util
2009	2800	340	952	881	9.94	8760	92.5 %
2010	2800	298	833	786	12.99	10210	94.4 %
2011	2800	286	798	631	12.75	8044	79. 1%
2012	2800	217	607	571	18.21	10405	94. 1%
2013	1600	507	810	738	18.93	13970	91.1 %
2014	1700	412	700	671	17.09	11470	95.9 %
2015	1700	507	862	855	18.14	15517	99.2 %
2016	1700	376	640	636	28.77	18293	99.4 %
2017	1700	350	595	593	31.16	18477	99.7 %

Source: NASS New England Fruit and Vegetable Report USDA Agriculture Census

UVM Fruit Program

UVM Apple and Grape Program: What we do

•Grower outreach (Extension)

Research

- Cultivar and germplasm evaluation
- Orchard management systems
- Organic apple and grape production
- Cider apple research
- Public service

Teaching

Grower Outreach

- •Primary technical support provider for apple & grape producers in VT
- •Distribution list of ~400 recipients
- •50+ electronic alerts during the growing season

•Site visits

- •Convener: VT Tree Fruit Growers, VT Grape & Wine Council annual meetings
- •Regional collaborator: annual joint meetings & presentations in New England & New York

Key concepts in Integrated Pest Management

- •Understand life cycles and how they are applied in the orchard
- Reduce inoculum
- Reduce susceptibility
- •Treat pests when they are most vulnerable

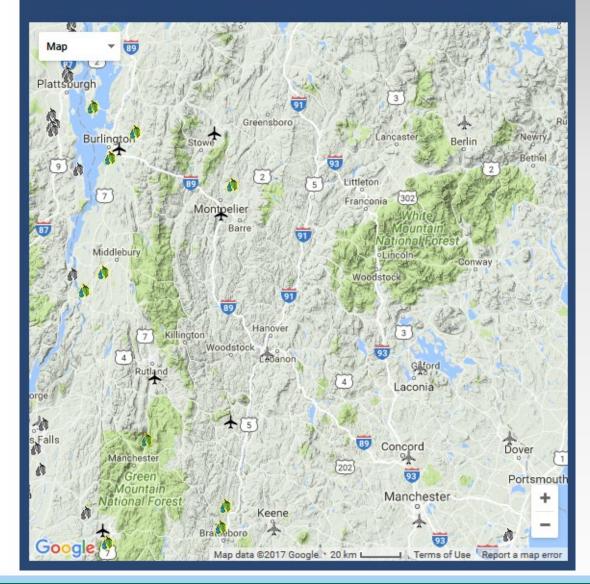
NEWA

18 stations in Vermont

- Six airports
- Twelve on-farm stations

Nationwide (East) 25 states

- Over 500 stations
- New coordinator at Cornell


newa.cornell.edu

Weather Stations in Vermont

Weather Stations	
Bennington (airport)	
Bennington (SVO)	
Burlington	
Cornwall	
Dummerston	
East Dorset	
East Montpelier	
Essex	
Montpelier	
Morrisville	
Putney	
Rutland	
Shoreham	
South Burlington	
South Hero	
Springfield	

16 records found.

Click on a map marker to go to the weather station's home page.

NEWA: Apple Models

- •Three disease models
 - Apple scab, fire blight, sbfs
- •Six insect models
 - Codling moth, plum curculio, obliquebanded leafroller, Oriental fruit moth, apple maggot, San Jose scale
- •Multiple horticultural models
 - Carbohydrate thinning, evapotranspiration, irrigation, frost risk, degree days
- Archived weather data

•<u>Caveat</u>: NEWA is a tool, not a silver bullet. It needs to be used as part of a comprehensive IPM program!!

Magnetic Street	Search N	Search NEWA web									
NEWA Netw	ork for Environme	nt and Weather A	pplications	Enter Searc	ch						
Weather Data	Pest Forecasts	Station Pages	Crop Management	Crop Pages	About						
Daily Summar	Daily Summary										

Date	Avg	Max	Min	LW	Total	RH	Avg Wind	Solar Rad	•	
	Temp (F)	Temp (F)	Temp (F)	Hours	Rain (in)	Hrs >= 90%	Speed (mph)	(langley)		
Shoreham - Daily Data Summary										
2/1/2014	28.8	37.4	19.5	6	0.00	11	2.3	89		
2/2/2014	34.6	39.3	30.6	10	0.16	23	1.5	37		
2/3/2014	23.3	30.2	17.9	0	0.00	15	4.0	75		
2/4/2014	20.9	34.7	12.0	0	0.00	14	1.5	135		
2/5/2014	17.9	21.0	13.2	0	0.00	24	5.6	45		
2/6/2014	11.2	20.6	4.3	0	0.00	18	2.1	129		
2/7/2014	15.3	32.1	6.4	0	0.05	11	3.0	159	Ξ	
2/8/2014	14.3	27.3	5.9	0	0.04	8	2.6	159		
2/9/2014	15.0	30.1	1.5	0	0.01	18	1.1	125		
2/10/2014	14.9	23.6	5.8	6	0.00	18	2.1	89		
2/11/2014	7.5	20.2	-2.5	3	0.01	14	1.8	122		
2/12/2014	3.1	25.8	-16.0	3	0.00	14	1.4	167		
2/13/2014	17.2	23.0	3.1	15	0.00	18	3.8	59		
2/14/2014	26.8	33.4	22.1	9	0.03	13	4.3	109		
2/15/2014	26.6	35.2	19.9	0	0.08	18	3.1	140		
2/16/2014	15.9	35.0	5.0	0	0.03	11	2.2	172		
2/17/2014	5.3	27.0	-7.7	0	0.00	8	1.2	198		
2/18/2014	13.7	27.6	-5.2	10	0.00	24	0.8	98		
2/19/2014	24.2	30.8	15.3	20	0.00	23	1.3	90		
2/20/2014	33.5	44.2	21.0	11	0.17	14	2.0	107		
2/21/2014	34.3	38.0	29.6	24	0.83	0	0.7	35		
2/22/2014	37.9	48.2	27.8	7	0.01	2	4.2	185	-	
4	274	50.1	07.0		0.00	2	2.1	100		

VT Orchard Scouting Program

VT Apple IPM 101: Tarnished plant bug traps

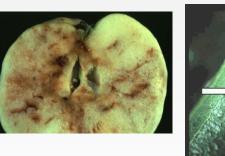
Analytics

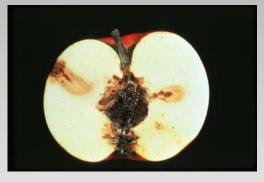
Edit video

BI 7 A

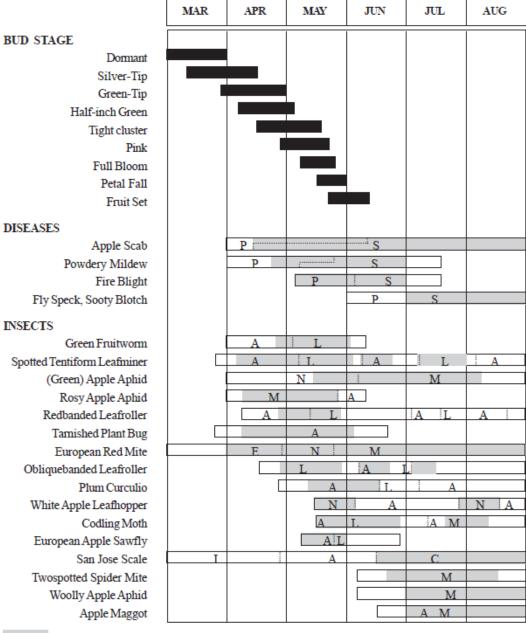
Primary Diseases of Apples in the Northeast

- Apple Scab
- Cedar Apple Rust
- Powdery Mildew
- Black/Bitter/White Rots
- Sooty Blotch / Fly Speck
- Brooks spot




Key Arthropod Pests of Apple

Tarnished Plant Bug (TPB) Leafminers (LM) European Apple Sawfly (EAS) European Red Mite (ERM) Plum Curculio (PC) Codling Moth (CM) Leafhoppers (LH) Green Apple Aphid (GAA/SA) Apple Maggot Fly (AMF)



Apple pest management 'calendar'

https://netreefruit.org/sites/netreefruit.org/ files/pdf-doc-ppt/pest_activity_times.pdf

=Critical Monitoring Time

P=Primary infection period S=Se

S = Secondary infection period

Predominant Stage: A=Adult, L=Larva, E=Egg, N=Nymph, C=Crawlers, M=Mixed, adults and immatures I=Immatures Note: Events may be 7 to 10 days later in northern New England. Adapted from chart compiled by D. Polk in the Management Guide for Low-Input Sustainable Apple Production, 1990, USDA, et al.

Apple insecticide efficacy

D

- - -

2023 update A	PPLE – PETAL	. Fall		S= S	uppres	ssion on	ly	HIGH AND MODERATE EFFECTIVENES				
	a.i.	IRAC	трв	EAS	РС	СМ	OFM	OBLR	RBLR	SJS	Rosy apple aphid	STLM
Actara 25WDG	Thiamethoxam	4A		Н*	н					М	н	н
Admire PRO 4.6SC	Imidacloprid	4A									н	н
Altacor 35WDG	Chlorantraniliprole	28		н		н	н	н	н			м
Assail 30SG	Acetamiprid	4A		м		н	н			м	н	н
Avaunt eVo	Indoxacarb	22	м	м	н	м	м					м
Belt 4SC	Flubendiamide	28				н	н	н	н			н
Beleaf 50 SG	Flonicamid	29	н			м				м	н	м
Danitol 2.4 EC	Fenpropathrin	3				н						
Delegate 25WG	Spinetoram	7				н	н	н	н			н
Dipel DF (OMRI)	B.t.	11A				М	М	н	н			
Entrust SC (OMRI)	Spinosad	5				м	м	н	н			н
Exirel	Cyantraniprole	28				н	н	н	н		н	м
Intrepid 2F (IGR)	Methoxyfenozide	18				М	М	н	н			
Imidan 70W	Phosmet	1B		н	н	н	н					м
Movento 240SC	Spirotetramat	23								н	М	
Rimon 0.83 EC	Novaluron (IGR)	15				н	н	н				м
Senstar	Pyriproxyfen+ Spirotretamat	23+7C				s				н	н	s
Transform WG	Sulfoxaflor	4C	?							s		
Voliam Flexi WDG	Thiamethoxam + chlorantraniliprole	28 + 4A			н	н	н	н	н		н	н
Verdepryn 100SL	Cyclaniliprole	28		?	н	н	н	?	?			?

This list is not exhaustive for every active ingredient or labeled product. No endorsement of products mentioned is intended, nor is criticism implied of products not mentioned.

THE UNIVERSITY OF VERMONT

Apple insecticide efficacy

APPLE – SU	MMER	S= Su	opression	only	HIGH AND MODERATE EFFECTIVENESS					
	a.i.	IRAC	Apple maggot	Stink bugs	СМ	OFM	OBLR	SIS	Wooly apple aphid	Potato leafhoppe
Actara 25WDG	Thiamethoxam	4A	н	м				м		н
Altacor 35WDG	Chlorantraniliprole	28			н	н	н			м
Assail 30SG	Acetamiprid	4A	н	м	н	н		м	М	н
Avaunt eVo	Indoxacarb	22	М		м	M				М
Belt 4SC	Flubendiamide	28			н	н	н			н
Beleaf 50 SG	Flonicamid	29			м			м	н	м
Danitol 2.4 EC	Fenpropathrin	3		м	н					
Delegate 25WG	Spinetoram	7	м		н	н	н			н
Dipel DF (OMRI)	B.t.	11A			м	м	н			
Entrust SC (OMRI)	Spinosad	5			м	м	н			н
Exirel	Cyantraniprole	28	м		н	н	н			м
Intrepid 2F (IGR)	Methoxyfenozide	18			м	м	н			
Imidan 70W	Phosmet	1B	н		н	н				
Movento 240SC	Spirotetramat	23						н	н	
Rimon 0.83 EC	Novaluron (IGR)	15			н	н	н			
Senstar	Pyriproxyfen+ Spirotretamat	23+7C			s			s	н	
Transform WG	Sulfoxaflor	4C						s		
Voliam Flexi WDG	Thiamethoxam + chlorantraniliprole	28 + 4A			н	н	н		н	н
Verdepryn 100SL	Cyclaniliprole	28			н	н	?			?
Brigade/Warrior II/Brigade (RUP)	Pyrethroids	ЗA	м	н	м	м	м	м		м

This list is not exhaustive for every active ingredient or labeled product. No endorsement of products mentioned is intended, nor is criticism implied of products not mentioned.

'Conventional' Apple Production in Vermont

•Production concentrated in Champlain & Connecticut River Valleys

•500-1000 bushels/acre

•Main cultivars:

• McIntosh, Cortland, Empire, Macoun, Honeycrisp

>60% orchards in business before 1980

•8-12 fungicide sprays/year

•3-6 insecticide sprays/year

'Conventional' Apple Production in Vermont

•Production concentrated in Champlain & Connecticut River Valleys

•500-1000 bushels/acre

•Main cultivars:

• McIntosh, Cortland, Empire, Macoun, Honeycrisp

>60% orchards in business before 1980

•4-8 fungicide sprays/year

•2-4 insecticide sprays/year

•(1/3-1/2 reduction in past 10-15 years)

Apple IPM in Vermont: Where are we? (2017)

- •100% of respondents report practicing IPM
- •100% report UVM Apple Program as:
 - "Useful", "Somewhat useful", or "Highly useful"
- •92% use UVM Apple Program information in decision making
- •92% report and economic impact from using IPM information
 - 100% of those report the impact as positive

http://www.uvm.edu/%7Efruit/pubs/2017AppleIPMstatus.pdf

Has the information obtained through the UVM Apple IPM Program allowed you to:	Yes	No
Increase your knowledge or understanding of Apple IPM	84.62% 11	15.38% 2
Increase your knowledge on how to prevent pest management problems	84.62% 11	15.38% 2
Adopt at least one new IPM practice	50.00% 6	25.00% 3
Reduce or minimize pesticide use	69.23% 9	23.08% 3
Determine if pesticides are needed in your orchard	76.92% 10	15.38% 2
Effectively time pesticides if they were needed	76.92% 10	15.38% 2
Adopt a reduced-risk alternative to manage a pest (e.g., insect, disease, weed, vole, deer, etc.)	61.54% 8	23.08% 3

Which of the following practices do you employ to reduce impacts on pollinators in your orchard? (2017)

Mowing to reduce flowering weeds prior to spraying	72.73% 8	27.27% 3	0.00% 0	11	0.73
Herbicides to reduce flowering weeds prior to spraying	9.09% 1	72.73% 8	18.18% 2	11	0.09
Maintaining flowering habitat within the orchard to encourage pollinators	27.27% 3	63.64% 7	9.09% 1	11	0.27
Maintaining flowering habitat outside but near the orchard to encourage pollinators	81.82% 9	9.09% 1	9.09% 1	11	0.82
Avoiding use of neonicotinoid insecticides	63.64% 7	36.36% 4	0.00% 0	11	0.64
Avoiding use of neonicotinoid insecticides before bloom	100.00% 11	0.00% 0	0.00% 0	11	1.00
Avoiding use of pesticides rated highly toxic to bees	81.82% 9	18.18% 2	0.00% 0	11	0.82
Avoiding use of demethylase/sterol inhibitor fungicides (e.g. Inspire, Rally, Procure, etc.) during bloom	90.91% 10	9.09% 1	0.00% 0	11	0.91

Which of the following practices do you employ to reduce impacts on pollinators in your orchard? (2017)

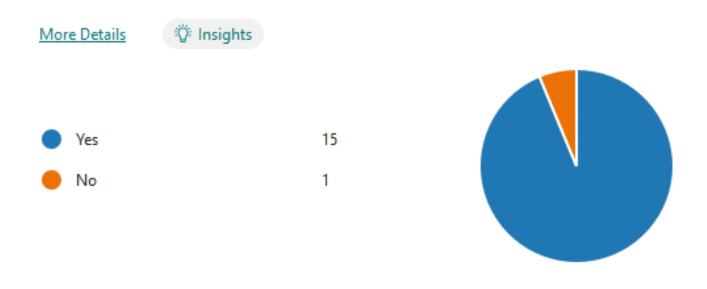
	Yes	No	Unsure	Total	Weighted Average
Use of migratory honey bees during bloom	54.55%	36.36%	9.09%		
	6	4	1	11	0.55
Keeping honey bees on the orchard property year-	9.09%	90.91%	0.00%		
round	1	10	0	11	0.09
Use of purchased bumble bees in the orchard	20.00%	80.00%	0.00%		
	2	8	0	10	0.20
Reliance on wild bees for pollination	54.55%	45.45%	0.00%		
	6	5	0	10	0.55
Use of nest boxes to encourage wild bee	9.09%	81.82%	9.09%		
populations	1	9	1	11	0.09
Minimum tillage to improve ground bee habitat	72.73%	18.18%	9.09%	· · · · · · · · · · · · · · · · · · ·	
	8	2	1	11	0.73
Not spraying insecticides during apple bloom	100.00%	0.00%	0.00%	· · · · · · · · · · · · · · · · · · ·	
	11	0	0	11	1.00

2023 Survey

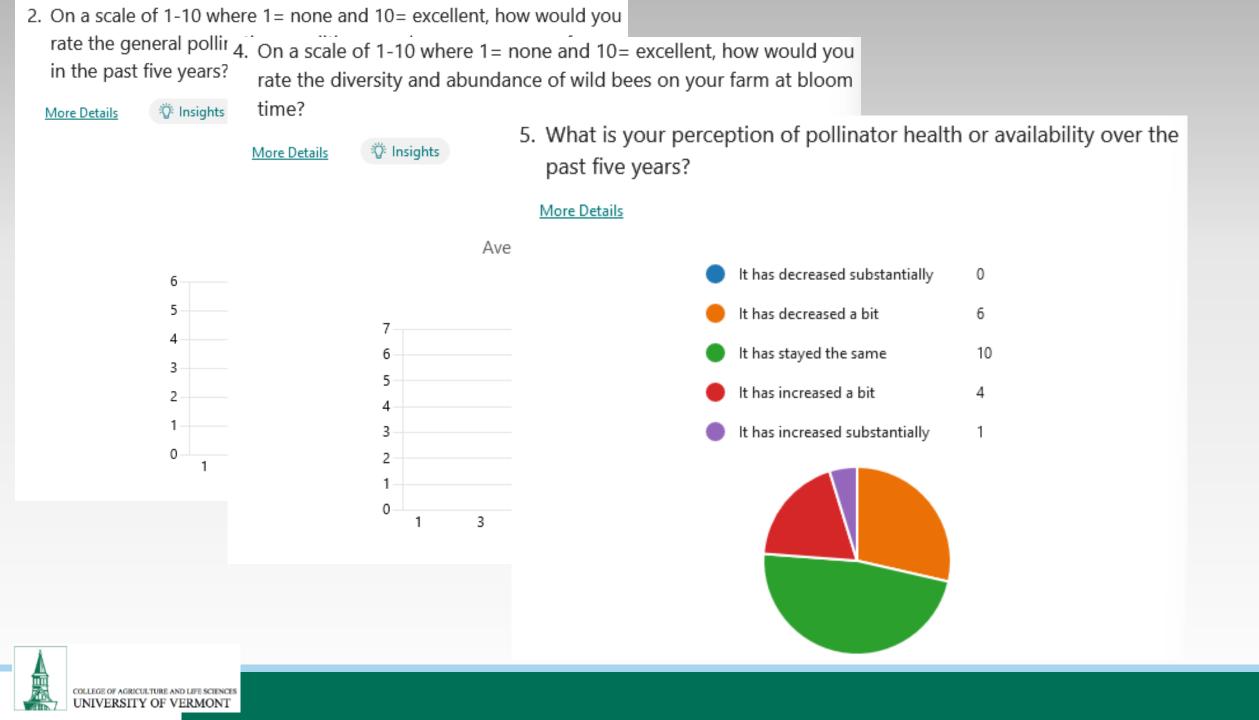
1. Do you use IPM in your orchard?

More Details

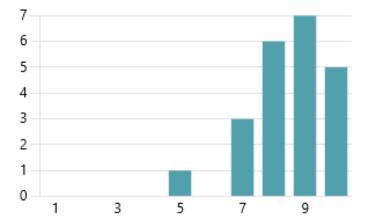
Yes
 No
 0



2023 Survey


6. Do you maintain diverse habitat including flowering plants near your orchard edge to promote beneficial insects?

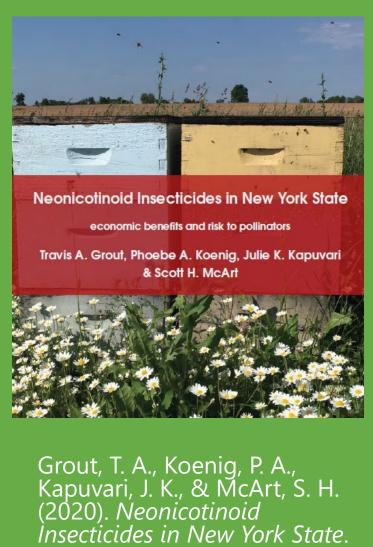
7. Do you maintain wild pollinator habitat spaces on your farm?



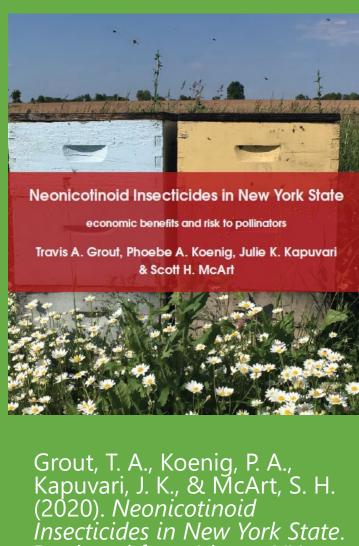
6. On a scale of 1-10 where 1= no effort and 10= extreme effort, how would you rate yourself on your effort to protect bees and other pollinators on your farm?


More Details

8.50

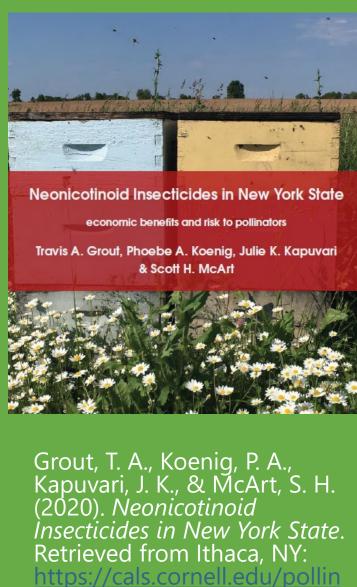

Average Rating

7. On a scale of 1-10 where 1= no knowledgeable and 10= extremely knowledgeable, how would you rate your knowledge of best practices to to protect bees and other pollinators on your farm?


Retrieved from Ithaca, NY: https://cals.cornell.edu/pollin ator-network/pollinatorresearch Table 5.23: Number of tree fruit field trials reporting significantly positive (green), negative (red), or no difference in yield, crop damage, or pest populations in tree fruit plots treated with foliar acetamiprid or nitroguanidine neonicotinoid products, compared to untreated controls of plots treated with only non-neonicotinoid foliar insecticides

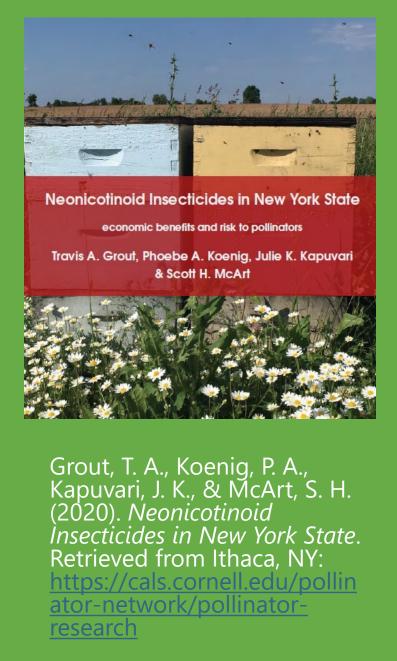
	New	York	s State	NYS	5 & re	egion ¹	No	rth An	nerica
Comparison	Y+	Y-	NS	Y+	Y-	NS	Y+	Y-	NS
Acetamiprid foliar sprays and alternatives									
Foliar acetamiprid vs. untreated controls	1	0	0	20	0	7	22	0	7
Foliar acetamiprid vs. other foliar insecticides	0	2	1	8	2	37	9	2	41
Nitroguanidine neonicotinoid foliar sprays and alte	Nitroguanidine neonicotinoid foliar sprays and alternatives								
Foliar nitroguanidines vs. untreated controls	12	0	0	30	0	13	33	0	15
Foliar nitroguanidines vs. other foliar insecticides	0	4	53	15	6	71	15	10	80
Notes : (1) Regional results used data from field trials	in Nev	v Vork	and O	ntario	This	analysi	s com	ares r	enorted

Notes: (1) Regional results used data from field trials in New York and Ontario. This analysis compares reported significance of differences in yield, crop damage, or pest populations following treatment using (a) a foliar neonicotinoid (acetamiprid and/or nitroguanidine neonicotinoid(s)) product or (b) a non-neonicotinoid foliar insecticide or no insecticide treatment (untreated control).


Retrieved from Ithaca, NY: https://cals.cornell.edu/pollin ator-network/pollinatorresearch Table 5.24: Performance of tree fruit foliar treatment plans including neonicotinoid-based products, relative to non-neonicotinoid foliar treatment plans: sign test of paired North American trials

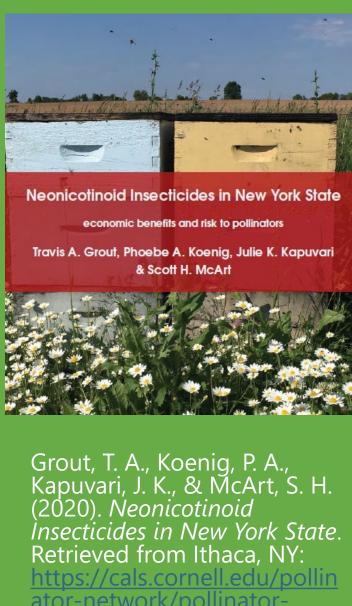
			Significantly more successes w				
	Paired	Percent	<i>H</i> _{a1} : neonic.	<i>H</i> _{a2} : alternative			
Comparison	obs.	Positive	P-value	P-value			
Foliar treatment plans with acetamiprid vs. non-neonicotinoid foliar treatment	70	57%	0.071	0.957			
Foliar treatment plans with imidacloprid vs. non-neonicotinoid foliar treatment	40	41%	0.895	0.174			
Foliar treatment plans with thiamethoxam vs. non-neonicotinoid foliar treatment	38	34%	0.983	0.037			

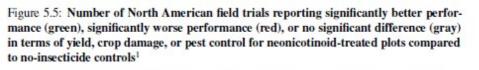
Notes: The outcomes of interest in these trials were damage by insect pests to trees, leaves, or fruit. Results highlighted in red suggest that the neonicotinoid-treated plot performed worse than its paired alternative in a significantly higher proportion of field trials than vice-versa. Results in grey are not statistically significant. (1) The right two columns reflect significance of the null hypothesis that the true proportion of positive to negative mean differences is 1:1 ($H_0: Prob[D > 0] = \frac{1}{2}$) against two alternative hypotheses: that the neonicotinoid-treated group performs better than the alternative-treated group in a majority of field trials ($H_{a1}: Prob[D > 0] > \frac{1}{2}$) and that the alternative-treated group performed better in a majority of crop damage trials ($H_{a2}: Prob[D < 0] > \frac{1}{2}$). This test makes no assumptions about the distribution of data.

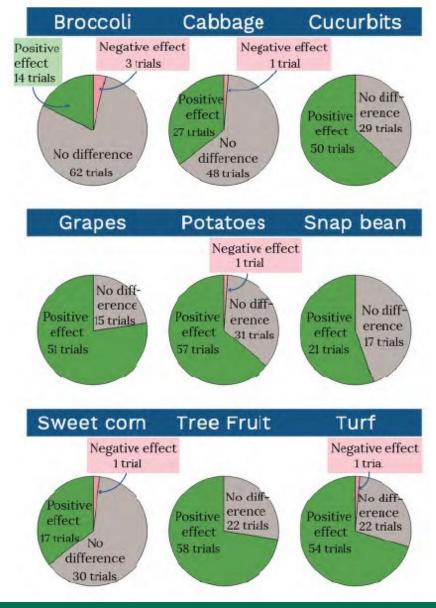


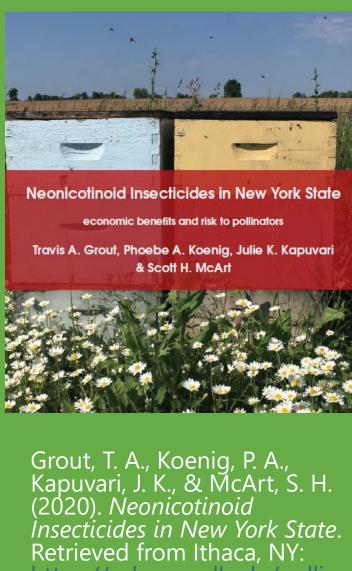
ator-network/pollinatorresearch

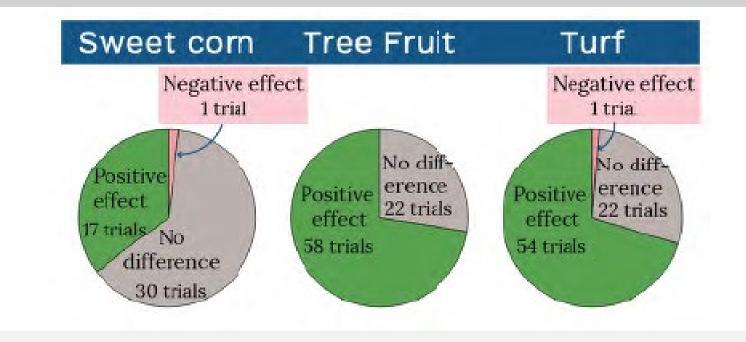
"In contrast to the inconsistent benefits observed in field crops, neonicotinoids provide much more consistent benefits in fruit crops: yield, crop damage, or pest control improved in 109 of 146 (75%) cases when neonicotinoid foliar sprays were compared to no-treatment controls "




"Risk to bees from exposures associated with neonicotinoid usage in fruit crops does occur, but both the likelihood and magnitude of risk are lower than in other settings...


However, complementing this data set, our own data from New York apple and strawberry plantings show that risk from imidacloprid and thiamethoxam exposures can be high during the bloom period for these crops (Figures 6.4 & 6.5). In these studies, exposures to acetamiprid were typically far greater than exposures to imidacloprid and thiamethoxam, but because acetamiprid is much less toxic to bees, risk was always lower. "


ator-network/pollinatorresearch



THE UNIVERSITY OF VERMONT

https://cals.cornell.edu/pollin ator-network/pollinatorresearch

Questions?

