An Improvement to Ranked-Choice Voting

E. Maskin
Professor of Economics and Mathematics
Harvard University
Nobel Laureate in Economics

Testimony to The House Committee on Government
Operations and Military Affairs

Ranked-choice voting (RCV) is great improvement over ordinary plurality rule

$\frac{40 \%}{A}$	$\frac{25 \%}{B}$	$\frac{35 \%}{C}$		three candidates: A, B, and C
B	C	B		
C	A	A		

- in example, 60% of voters prefer both B and C to A
- but under plurality rule, B and C split anti- A vote and so A wins with 40\%

$$
\begin{array}{ccc}
\frac{40 \%}{A} & \frac{25 \%}{B} & \frac{35 \%}{C} \\
B & C & B \\
C & A & A
\end{array}
$$

- RCV solves this problem
- because 60% of voters rank both B and C above A, A will not win
- instead,
- since no candidate gets majority of first-place votes, B is dropped
- C then defeats A in the instant runoff

$$
\begin{array}{ccc}
\frac{40 \%}{A} & \frac{25 \%}{B} & \frac{35 \%}{C} \\
B & C & B \\
C & A & A
\end{array}
$$

- but notice that 65% of voters prefer B to C
- and 60% prefer B to A
- so if want to respect will of the majority, B (not C) should be winner
- B is called Condorcet winner
- majority of voters (65\%) prefer B to C
- majority of voters (60\%) prefer B to A

$$
\begin{array}{ccc}
\frac{40 \%}{A} & \frac{25 \%}{B} & \frac{35 \%}{C} \\
B & C & B \\
C & A & A
\end{array}
$$

- can make small change to RCV to ensure that Condorcet winner like B won't lose election
- instead of dropping candidate with fewest first-place votes (as in regular RCV), drop candidate with fewest total votes

$\frac{40 \%}{A}$	$\frac{25 \%}{B}$	$\frac{35 \%}{C}$
B	C	B
C	A	A

- if a voter ranks candidate C above two other candidates, C gets two total votes from that voter
- so each voter in 35% group contributes two total votes to C
- if a voter ranks candidate C above one other candidate, C gets one total vote from that voter
- so each voter in 25% group contributes one total vote to C
- if a voter ranks candidate last (i.e., above no other candidates), C gets zero total votes from that voter
- so each voter in 40% group contributes zero total votes to C

$$
\begin{array}{ccc}
\frac{40 \%}{A} & \frac{25 \%}{B} & \frac{35 \%}{C} \\
B & C & B \\
C & A & A
\end{array}
$$

in example

- C gets $35 \times 2+25 \times 1=95$ total votes
- A gets $40 \times 2=80$ total votes
- B gets $25 \times 2+75 \times 1=125$ total votes
- so candidate A dropped

$$
\begin{array}{ccc}
\frac{40 \%}{A} & \frac{25 \%}{B} & \frac{35 \%}{C} \\
B & C & B \\
C & A & A
\end{array}
$$

- but when A is dropped, the A-supporters (the 40% group) have their second choice elevated into first place (as in ordinary RCV)
- so rankings now look like this:

$$
\begin{array}{ccc}
\frac{40 \%}{B} & \frac{25 \%}{B} & \frac{35 \%}{C} \\
C & C & B
\end{array}
$$

-65% of voters rank B first

- Thus, B (the Condorcet winner) is elected
- if a candidate is a Condorcet winner, there is a strong argument (based on democratic principles) that she should be elected
- by tweaking the rules of RCV so that the candidate with fewest total votes (rather than the fewest first-place votes) is dropped, we ensure that Condorcet winner will be elected

