
Trends
Plant hormones are essential media-
tors of plant–microbe interactions.
Microbes affect host plant physiology
by producing plant hormones and their
mimics.

Even non-plant-interacting microbes
as well as animal cells produce and
perceive plant hormones. The cross-
kingdom effects of plant hormones
indicate that they may play roles
among microbes per se and in animal-
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It is well established that plant hormones such as auxins, cytokinins (CKs), and
abscisic acid (ABA) not only govern important plant physiological traits but are
key players in plant–microbe interactions. A poorly appreciated fact, however,
is that both microbes and animals produce and perceive plant hormones and
their mimics. Moreover, dietary plant hormones impact on human physiological
process such as glucose assimilation, inflammation, and cell division. This
leads us to wonder whether plant hormones could ensure functions in microbes
per se as well as in animal–microbe interactions. We propose here and explore
the hypothesis that plant hormones play roles in animal–microbiota relation-
ships, with consequences for human health.
–microbe interactions.

Plant and human microbiota affect
host fitness by mediating nutrient
assimilation, stress responses, and
hormone production.

Plant hormones share chemical simila-
rities with human hormones and elicit
responses in animal cells. A few studies
have begun to shed light on the effects
on human and rodent physiology of
plant hormones ingested in the diet.

Although plant hormones are present
in the human body, their biosynthesis
and modes of action are currently
elusive.
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Can Plant Hormones Affect Human Physiology and Gut Microbiota?
Microbes have shaped the environment for billions of years, intimately coevolving with other
organisms [1]. Microbial communities, the so-called ‘microbiota’, provide a myriad of functions
for interacting organisms, directly affecting their fitness [1]. Unraveling how the microbiota
affects host fitness has become a major challenge for scientists [1].

On the one hand, plant hormones regulate plant physiology and shape the plant microbial
environment [2]. On the other, commensal, symbiotic, and pathogenic microbes secrete and
mimic plant hormones to alter their hosts and microbial communities [2]. A poorly appreciated
fact is that animals, including humans, produce and perceive plant hormones [3]. Remarkably,
these hormones are known to affect glucose homeostasis, inflammatory responses, and
cellular processes [3]. This has important implications for human health. We propose here
that plant hormones, acquired from the diet or produced by the human gut microbes, impact on
human health (Figure 1). We illustrate this concept with examples of how plant hormones affect
human diseases, such as diabetes, inflammatory bowel disease (IBD), and cancers, which are
also modulated by the gut microbiota [4].

Type 2 Diabetes: Plant Hormones on Fire
The plant stress hormone ABA is synthesized by human and is structurally close to the retinoic
acid (RA) [3], an essential signaling molecule for human development. ABA affects glucose
homeostasis through insulin release and glucose uptake, and thus is implicated in type 2 and
gestational diabetes [5]. This raises the possibility that an ABA-enriched diet could alleviate
diabetes. Indeed, Magnone et al. showed that an ABA-enriched fruit diet correlates with
increased glucose tolerance [6].

The degree to which gut microbes produce ABA is unclear [7]. Such microbial ABA could affect
ABA homeostasis after glucose uptake [5,7]. Future experiments with germ-free mammals
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Figure 1. Could Plant Hormones, Derived from the Diet or Microbes, Impact on Human Health? Plants
produce plant hormones to manage their physiology and to affect their microbial environment. Similarly, microbes produce
plant hormones to manipulate host plants. However, the production of plant hormones by microbes in the human gut
remains unexplored. Dietary plant hormones impact on human physiology, but their influence on the human gut microbiota
is unknown and could affect human health.
inoculated with wild-type or ABA-deficient microbes would address the role of microbial ABA
production in glucose tolerance and diabetes.

Salicylic acid (SA) and derivatives including aspirin are also known to regulate glucose metab-
olism [8]. SA limits insulin resistance through several pathways [9–11]. Notably, SA prevents the
inactivation of AMP-activated protein kinase, a drug target in the treatment of type 2 diabetes
[9]. This suggests a promising use of salicylates as diabetes treatments. However, these
hormones also affect microbes and presumably would further perturb the imbalanced micro-
biota of diabetic patients [10,12].

Inflammatory Disorders: Plant Hormones As Immunomodulators
Several immune disorders are related to the interplay between dietary habits and the gut
microbiota [1,4]. Indeed, the diet influences the prevalence of some microbes and the secretion
of microbial compounds affecting the immune system [13]. For instance, bacterial short-chain
fatty acids dampen inflammation by directly modulating the expression of key inflammatory
regulators [13,14]. By contrast, bacteria-derived hydrogen sulfide inflames intestinal tissues
and is thought to contribute to IBD, further illustrating how microbe-derived compounds
regulate human immunity [15].

Among the plant hormones produced by microbes, gibberellic acids (GAs) have anti-inflam-
matory properties by dampening the release of proinflammatory interleukins [16]. Conse-
quently, a GA-enriched diet could alleviate inflammatory disorders. However, here too the
effects of these compounds on the gut microbiota and the involvement of GA-microbial
production in inflammatory disorders remain unexplored.
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In contrast to GAs, ABA has proinflammatory effects [17]. Several stimuli induce ABA produc-
tion by human granulocytes, which in turn increases cAMP in immune cells [17,18]. Interest-
ingly, ABA analogs counteract this cAMP increase and have been explored as anti-
inflammatory drugs [18]. Nevertheless, ABA also dampens inflammation caused by obesity
[19], IBD [20], and influenza infection [21]. Given that an ABA-enriched diet affects human
physiology [6], it may also influence inflammatory response.

Microbe-Induced Cancers: A Role for Plant Hormones?
Pathogen-derived plant hormones, such as auxins and CKs, participate in tumor induction in
plants. Plant hormone compounds impact on the human cell cycle and cell viability [22,23], and
thus when ingested through food or produced by microbes they could influence cancer
development in animals [24].

The main plant auxin, indole-acetic acid (IAA), and its analog, agent orange, have teratogenic
effects [25,26]. However, several promising cancer treatments have emerged based on the
natural circulating IAA in the human body [3]. Indeed, IAA can be specifically oxidized by plant
peroxidases expressed in modified cancer cells [27] or by photosensitizing dyes used in
photodynamic therapy [28]. In both cases, oxidation of IAA triggers an accumulation of
cytotoxic radical species in cancer cells, causing targeted cell death without damaging healthy
tissues [27,28]. Given that the lower oxygen content of cancer cells is the main limiting factor,
IAA increases treatment efficiency and has emerged as a promising agent in cancer therapy
[27,28]. IAA and agent orange were also shown to impede DNA synthesis in several types of
human cancer cells [22]. However, the functional mechanisms remain elusive [3]. Microbial and
dietary IAA could be involved in human cancers, but how they influence circulating IAA in
humans is unknown.

CKs are known to impair cancer cells viability [3,23]. In a wide range of organisms, CKs can be
produced through the degradation of CK-modified tRNA [29]. This tRNA modification improves
protein translation efficiency and requires tRNA-isopentenyl transferases (tRNA-IPT) [29]. The
human tRNA-IPT, TRIT1, is implicated in lung cancer [30]. The TRIT1 gene encodes several
mRNA variants, with the full-length transcript being less abundant in lung cancer cells [30]. A
promising therapy is to specifically express this full-length transcript in cancer cells to reduce
their growth rate [30]. Microbial tRNA-IPT genes are known to be associated with pathogen
virulence [31,32]. Deletion of the gene encoding tRNA-IPT in human pathogenic bacteria is
expected to impair CK production, as observed for other microbes [29]. However, the role of
these hormones in human pathogen virulence and microbe-induced cancers remains
unexplored.

Other plant hormones also impact on cell-cycle regulation [3]. For instance, SA binds to and
modulates the activity of cyclin A2/cyclin dependent kinase-2, a common cell-cycle regulator
known to be involved in cancer [33]. This enabled the design of SA-like molecules as specific
anti-proliferative cellular drugs [33].

Plant Hormones and Depression: Riding the Gut–Brain Road
The role of the gut in neurological disorders is gaining more attention as exemplified by the
emerging microbiota–gut–brain axis concept [34]. The gut microbiota and diet are thought to
alter human stress-related behaviors in different ways. Gut commensal bacteria can produce
neurotransmitters impacting on anxiety via the hypothalamus–pituitary–adrenal (HPA) axis
[34,35]. The HPA axis not only plays a key role in development but also governs stress
responses and behavior [34,35]. Remarkably, ABA has anti-depressive properties by damp-
ening HPA axis activity through the RA pathway [36,37]. Furthermore, the mammalian brain
contains ABA, and serum levels of ABA increase in stressful environments [37]. However, the
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Outstanding Questions
Do plant hormones ingested in the diet
affect human health through the gut
microbiota?

Does the human gut microbiota pro-
duce plant hormones or their mimics?

Do plant hormones modulate animal–
microbe interactions?

How do plant hormones act to prompt
physiological responses in humans?
origin of ABA in mammals remains unclear, and could very well derive from microbes. In
addition, dietary ABA affects human physiology [6] and could alleviate anxiety, but its effect of
on depressive behavior remains unexplored.

Among microbe-derived neurotransmitters, serotonin is known as a key modulator in depres-
sion [34]. Serotonin is synthesized from the essential amino acid tryptophan, and depressive
patients exhibit disturbances of tryptophan homeostasis [34]. The IAA plant auxin is also
synthesized from tryptophan and is chemically related to serotonin. However, how IAA from
food or microbes alters tryptophan and serotonin homeostasis is so far unknown [3].

Concluding Remarks and Perspectives
We are investigating the hypothesis that plant hormones impact on human health and even
modulate animal–microbiota relationships. Plant hormones are ingested in the diet, with
consequences for human physiology, but their mode of action remains unclear. In addition,
a wide range of microbes produce and perceive plant hormones but how the human gut
microbiota responds to and synthesize them remain unexplored. Do gut microbes possess
plant hormone metabolic pathways? Are these pathways expressed? Is there a correlation with
human fitness? In future research, emerging omics data on the human gut microbiota could be
exploited to address these questions.

Furthermore, plant hormones are key signaling compounds between plant and microbes, but
have not yet been envisaged to act similarly in animal–microbe interactions. Given their cross-
kingdom effects, could they act to fine-tune the human–microbiota relationship? Studying
germ-free hosts inoculated with hormone-deficient microbes would extend our knowledge of
plant hormones beyond plant science and improve our understanding of animal–microbiota
interactions.
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