

Bee Informed Partnership

Replacing colony losses


1000 colony loss at 50%:

With nucleus colonies:\$100,000

With Packages:\$75,000

Or equivalent lost income

Climate Change Habitat Loss Parasites and Pathogens Pesticides

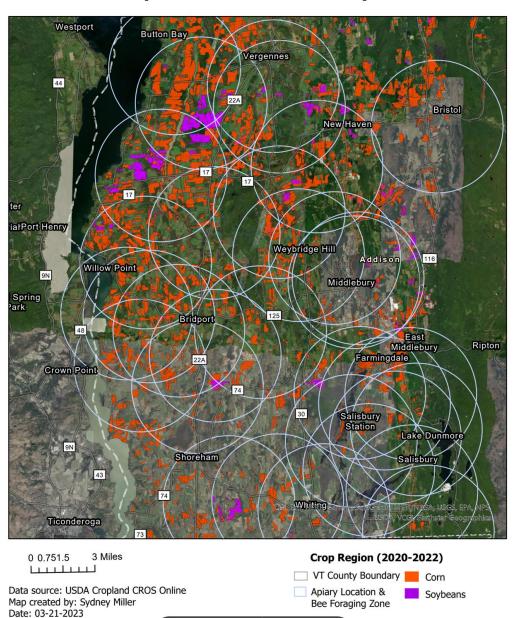
APHIS National Honey Bee Survey

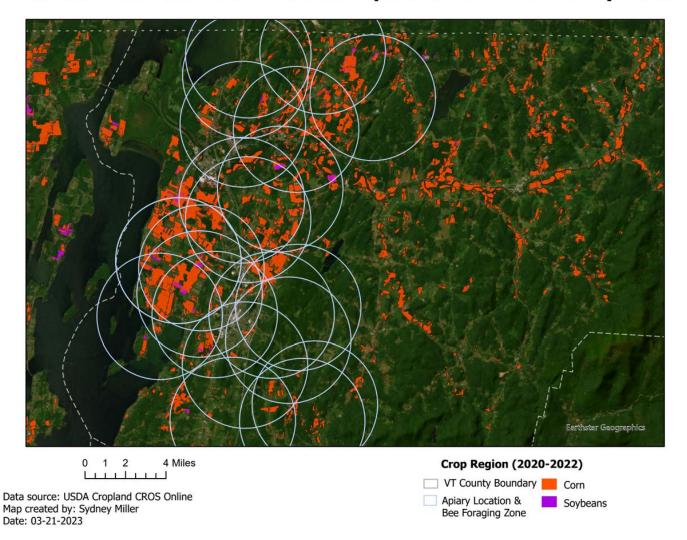
Lab Diagnostic Results

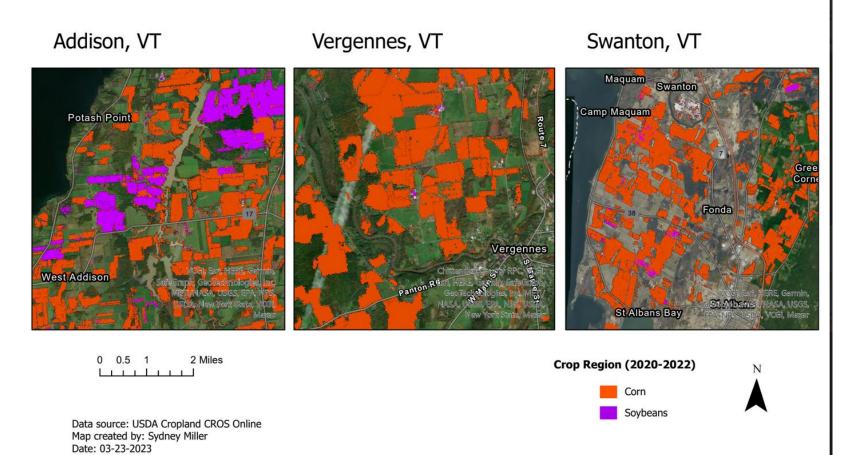
Table 2: Pest Results

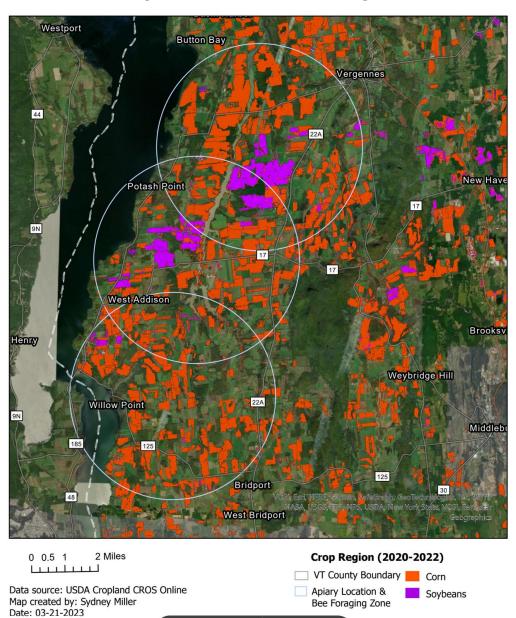
Your Value	Pest	Notes	
1021	Sample size (# of bees)	Total number of bees in alcohol sample	
4	Total <i>Varroa</i> mites counted	Total number of Varroa mites counted in entire sample.	
0.4	Varroa load (mites per 100 bees)	A frequently occuring external parasite that reproduces in brood cells and vectors viruses	
0.8	Nosema load (millions of spores per bee)	Nosema spore count is determined by microscopy; Nosema is a unicellular gut parasite that produces spores	
- -	Apis cerana	Asian honey bee that can be an invasive pest. They are not known to be in the U.S.	
-	Tropilaelaps spp. mites	Tropilaelaps mites are parasitic mites native to Asia. They are not known to be in the U.S.	
All I	·		

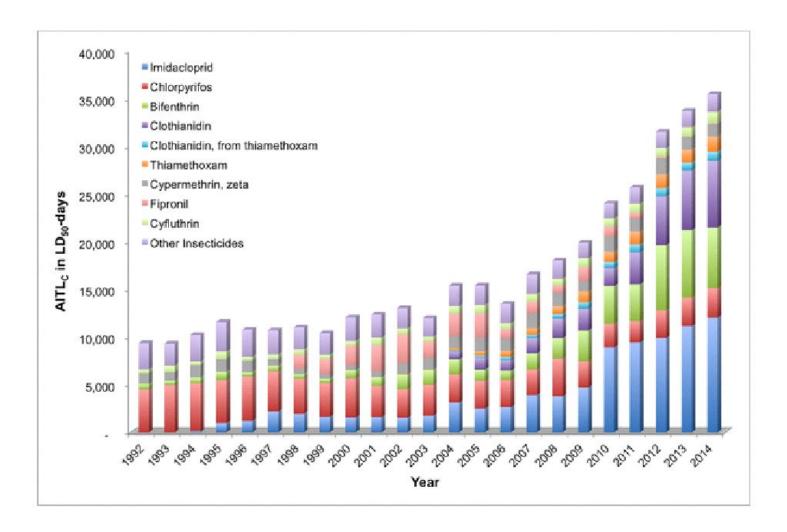
The table above indicates the results of your colonies' in-lab microscopic and visual inspections conducted at the University of Maryland. This report summarizes the alcohol sample size, the *Varroa* mite count, the *Nosema* spore load, and any *Apis cerana* and *Tropilaelaps spp.* mites found. *Varroa* mite counts that exceed 3 mites per 100 bees are thought to cause damage, and colonies exceeding this threshold should be treated to reduce mite loads as soon as possible. *Nosema* spore counts in excess of 1 million spores per bee are thought to cause damage, and colonies with infection levels above this threshold should be considered for treatment depending on the season. For the most updated seasonal threshold monitoring and treatment options, see:

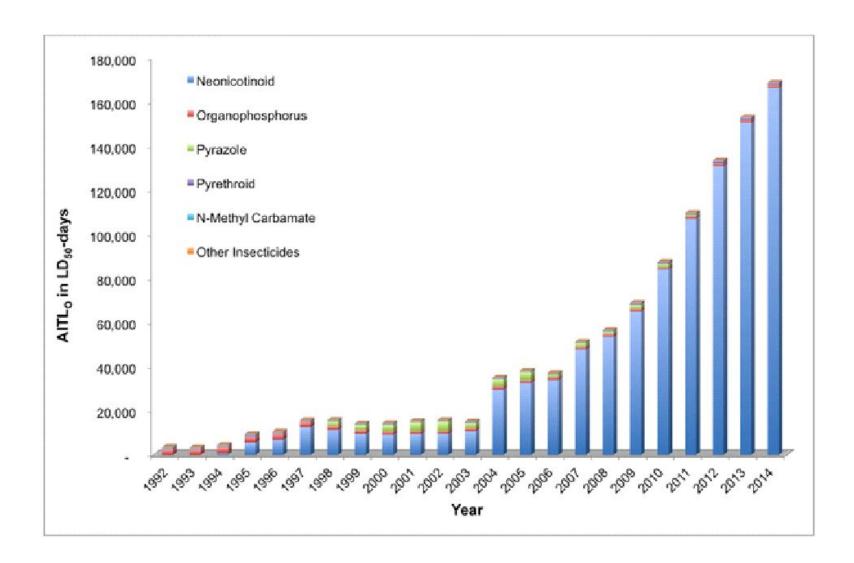

		Present (+) Not detected	Pathogen target	Your
Pathogen	Notes	(-)	copies	Percentile
Acute Bee Paralysis Virus (ABPV)	Rare, horizontal transmission, <i>Varroa</i> parasitism Trembling, inability to fly, darkening and hair loss on thorax and abdomen	-	0	0
Black Queen Cell Virus (BQCV)	Very common, horizontal transmission, <i>Varroa</i> parasitism Dead queen larvae sealed in queen cells with darkened walls	n/a	n/a	
Chronic Bee Paralysis Virus (CBPV)	Rare, horizontal transmission Trembling, inability to fly, bloated abdomens, black hairless bees	-	0	0
Deformed Wing Virus (DWV)	Very common, horizontal and vertical transmission, <i>Varroa</i> parasitism Deformed wings in emergent bees	:-	0	0
Israeli Acute Paralysis Virus (IAPV)	Rare, horizontal transmission, <i>Varroa</i> parasitism Trembling, inability to fly, darkening and hair loss on thorax and abdomen	-	0	0
Kashmir Bee Virus (KBV)	Very rare, horizontal transmission, <i>Varroa</i> parasitism Weakened colonies, no obvious visual signs	0m	0	0
Slow Paralysis Virus (SBPV)	Not known to be in the U.S.	VIII	0	0
Lake Sinai Virus-2 (LSV- 2)	Common, horizontal and vertical transmission, Varroa parasitism Weakened colonies, no obvious visual signs	92	0	0

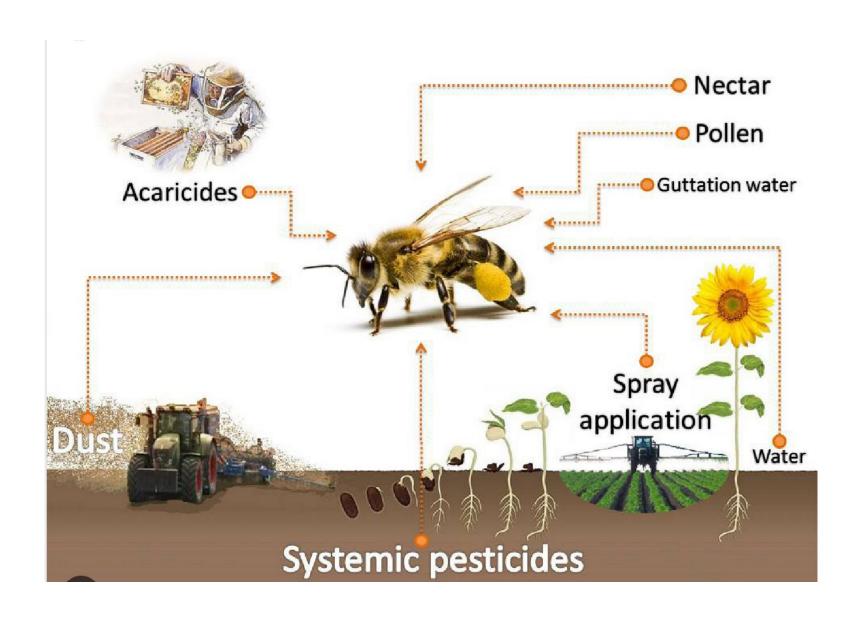



Addison Co. Vermont Corn & Soybean Crop Land Cover (2020-2022); Potential Neonicotinoid Pesticide Exposure Zones for Honey Bees

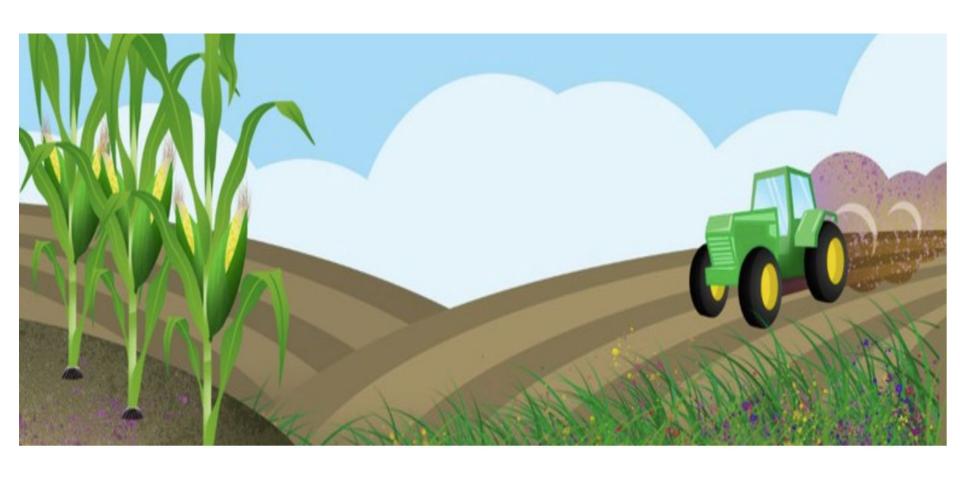

Franklin Co. Vermont Corn & Soybean Crop Land Cover (2020-2022); Potential Neonicotinoid Pesticide Exposure Zones for Honey Bees




Vermont Corn & Soybean Crop Land Cover (2020-2022); Potential Neonicotinoid Pesticide Exposure Zones for Honey Bees

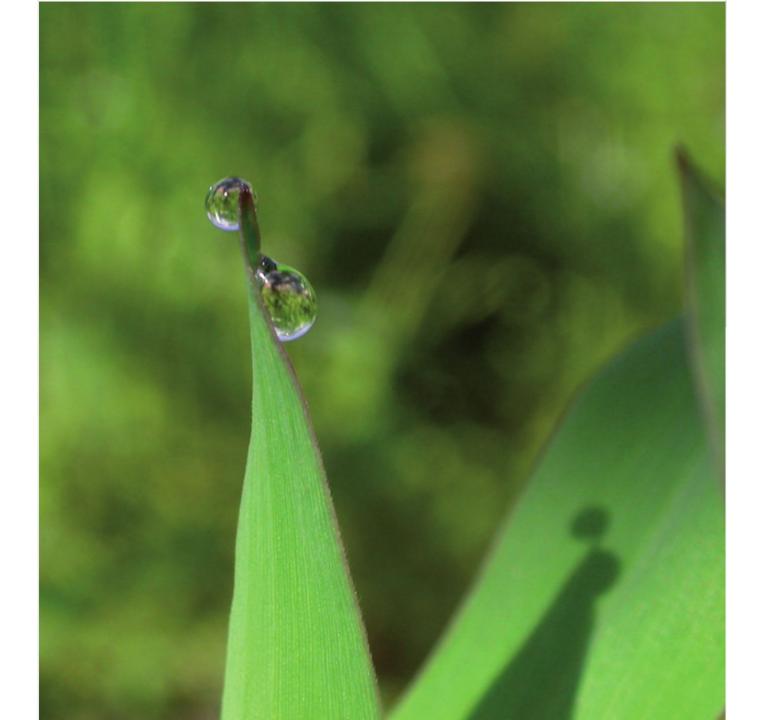


Addison Co. Vermont Corn & Soybean Crop Land Cover (2020-2022); Potential Neonicotinoid Pesticide Exposure Zones for Honey Bees

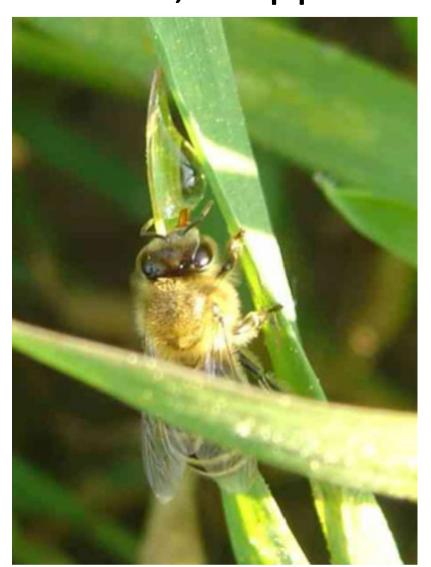


Acute Exposure

Acute exposure to dust


Exposure to dust on field adjacent plants up to 9 ppb

Guttation fluid



Equal to: IMD 47,000 ppb; CLO 23,300 ppb; TMX 11,900 ppb

Insecticide Content in Guttation. Chemical analyses of the guttation water from laboratory-grown corn plants during 3 wk of growth showed the presence of the corresponding seed coating neonicotinoids in all samples. Guttation drops collected on plants from neonicotinoid-coated seeds contained concentrations of each respective active ingredient of (mean \pm SE) 47 ± 9.96 mg/liter for imidacloprid, 23.3 ± 4.2 mg/liter for clothianidin, and 11.9 ± 3.32 mg/liter for thiamethoxam with statistically significant differences (ANOVA: F = 7.51; df = 2, 15; P = 0.005). The amount

Always higher than 10,000ppb up to 200,000ppb

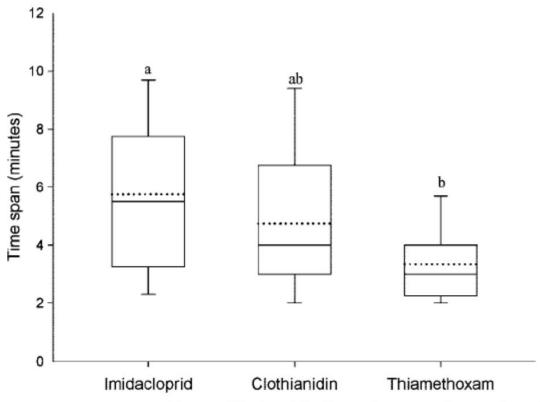
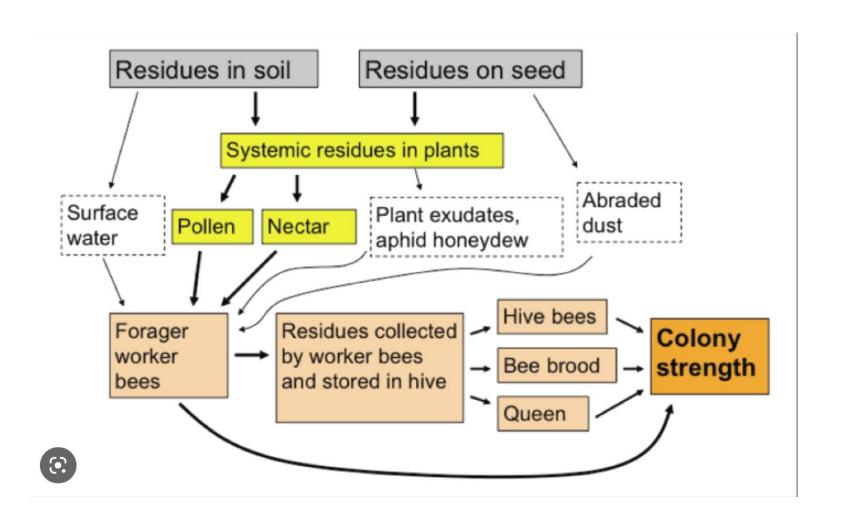
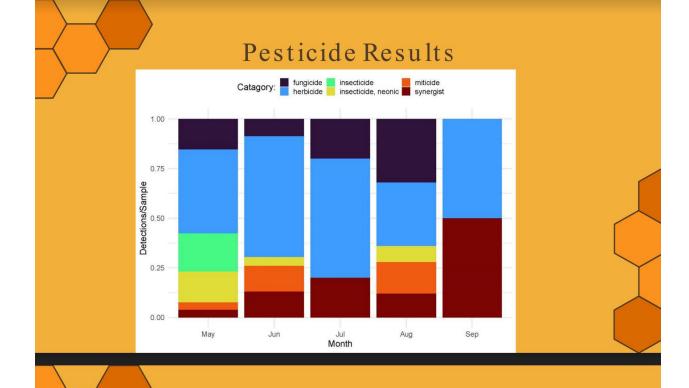
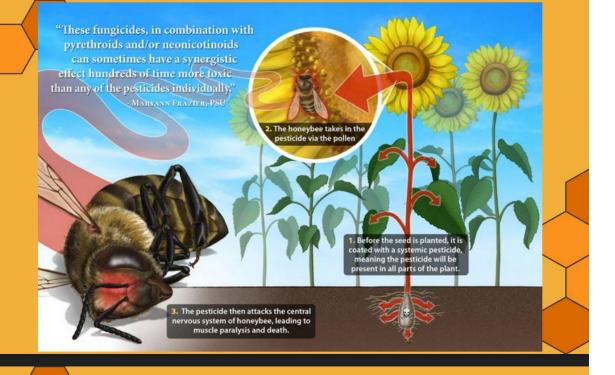



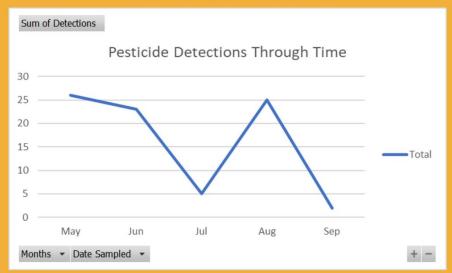
Fig. 2. Time between appearance irreversible wing-block and drinking of guttation drops collected on leaves of field corn crops, from three marketed neonicotinoid-coated. Guttation sampled on plants germinated from untreated seeds did not show any toxicity. The whisker represents the maximum and the minimum of the recorded time; the dotted line indicates the average; the upper, middle, and lower lines of the box indicate the 75, 50, and 25% of the time, respectively. Bars marked with different letters indicate significant differences (P < 0.05; Tukey–Kramer test).

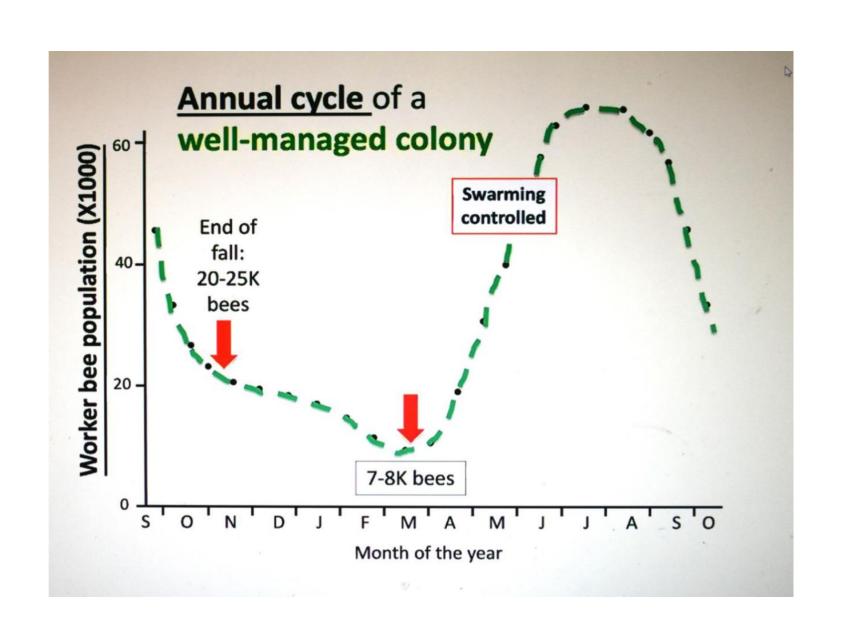
Chronic exposure



Neonic levels in surface water from agricultural watersheds averaged 0.012 ppb


Pollen exposure





	Pesticide	Detections	Group	Pesticide	Detections	Group
ľ	Carbaryl	2	insecticide	Thiabendazole	1	fungicide
	Chlorantraniliprole	1	insecticide	Azoxystrobin	8	fungicide
	Tebufenozide	1	insecticide	Picoxystrobin	3	fungicide
	Indoxacarb	1	insecticide	Trifloxystrobin	3	fungicide
	Thiamethoxam	3	insecticide, neonic	Tebuthiuron	8	herbicide
	Clothianidin	1	insecticide, neonic	Thiophanate-methyl	2	herbicide
	Imidacloprid	2	insecticide, neonic	Atrazine	6	herbicide
	Thiacloprid	1	insecticide, neonic	Diuron	8	herbicide
	2,4-DMPF	8	miticide	Propazine	4	herbicide
	Piperonyl butoxide	9	synergist	Metolachlor	9	herbicide

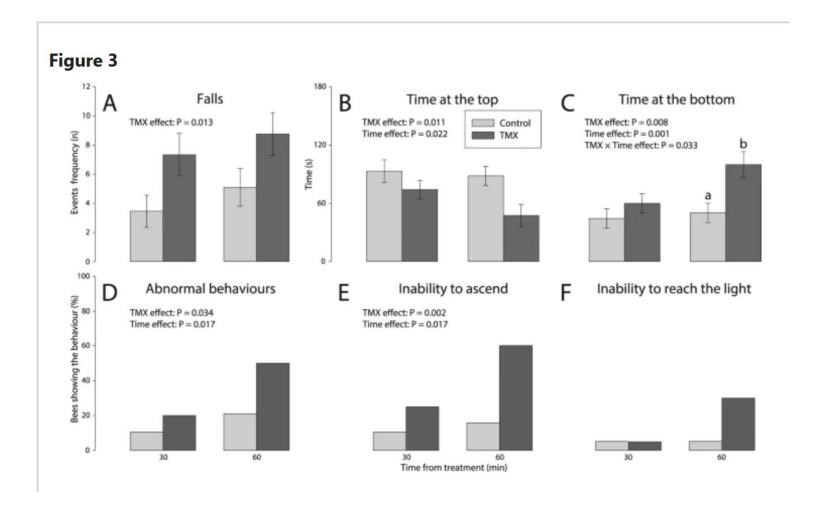
Pesticide Results

sample_type	File.Name	Client.ID2	Massg.	Thiamethoxam	Clothianidin	Imidacloprid	Acetamiprid	Thiacloprid
Pollen (trap)	2022-04-13_040	S041706	5.05	NA	NA	NA	NA	NA
Pollen (trap)	2022-04-13_041	S041707	4.93	NA	NA	NA	NA	NA
Pollen (trap)	2022-04-13_042	S041708	5.04	NA	NA	NA	NA	NA
Pollen (trap)	2022-04-13_043	S041709	5	NA	NA	NA	NA	NA
Pollen (trap)	2022-04-13_044	S041710	4.95	0.202020202	0.606060606	NA	NA	NA
Pollen (trap)	2022-04-13_045	S041711	4.62	NA	NA	NA	NA	NA
Pollen (trap)	2022-04-13_046	S041712	5.07	NA	NA	NA	NA	NA
Pollen (trap)	2022-04-13_047	S041713	5.06	NA	NA	NA	NA	NA
Pollen (trap)	2022-04-13_048	S041714	5.03	NA	NA	NA	NA	NA
Pollen (trap)	2022-04-13_049	S041715	5.02	0.199203187	NA	NA	NA	0.13346613
Pollen (trap)	2022-04-13_050	S041716	5	NA	NA	NA	NA	NA
Pollen (trap)	2022-04-13_051	S041717	4.97	NA	NA	NA	NA	NA
Pollen (trap)	2022-04-13_052	S041718	4.96	NA	NA	NA	NA	NA
Pollen (trap)	2022-04-13_053	S041719	0.2591	0.270165959	NA	NA	NA	NA
Pollen (trap)	2022-04-13_054	S041720	4.98	NA	NA	0.602409639	NA	NA
Pollen (trap)	2022-04-13_055	S041721	5.04	NA	NA	0.595238095	NA	NA
Pollen (trap)	2023-04-10_SM_	I SM_001	4.8132	NA	5.31	NA	NA	NA
Pollen (trap)	2023-04-10_SM_	I SM_010	4.7057	NA	NA	NA	NA	NA
Pollen (trap)	2023-04-10_SM_	I SM_011	4.821	NA	NA	NA	1.18	NA
Pollen (trap)	2023-04-10_SM_	I SM_012	5.0375	NA	NA	NA	NA	NA
Pollen (trap)	2023-04-10_SM_	I SM_013	5.0648	NA	NA	NA	NA	NA
Pollen (trap)	2023-04-10_SM_	I SM_014	4.5683	NA	NA	NA	NA	NA
Pollen (trap)	2023-04-10_SM_	I SM_015	4.7021	NA	NA	NA	NA	NA
Pollen (trap)	2023-04-10_SM_	SM_016	4.6379	NA	NA	NA	NA	NA
Pollen (trap)	2023-04-10_SM_	SM_017	4.5091	NA	NA	NA	NA	NA
Plant Tissue	2023-04-10_SM_	SM_018	7.4533	NA	NA	NA	NA	NA
Plant Tissue	2023-04-10_SM_	SM_019	6.9484	NA	NA	NA	NA	NA
Pollen (trap)	2023-04-10_SM_	SM_002	4.9198	NA	1.361843977	NA	NA	NA
Plant Tissue	2023-04-10_SM_	SM_020	6.5574	NA	NA	NA	NA	NA
Plant Tissue	2023-04-10_SM_	SM_021	5.2068	NA	NA	NA	NA	NA
Plant Tissue	2023-04-10_SM_	SM_022	7.6986	NA	NA	NA	NA	NA
Plant Tissue	2023-04-10_SM_	I SM_023	6.2717	NA	1.068290894	NA	NA	NA
Plant Tissue	2023-04-10_SM_	I SM 024	8.8519	NA	NA	NA	NA	NA

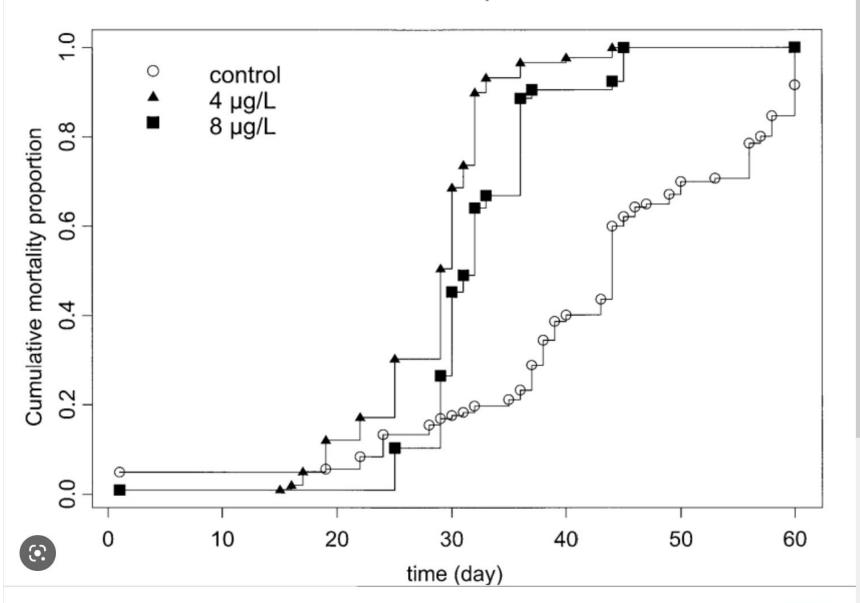
2022 Testing

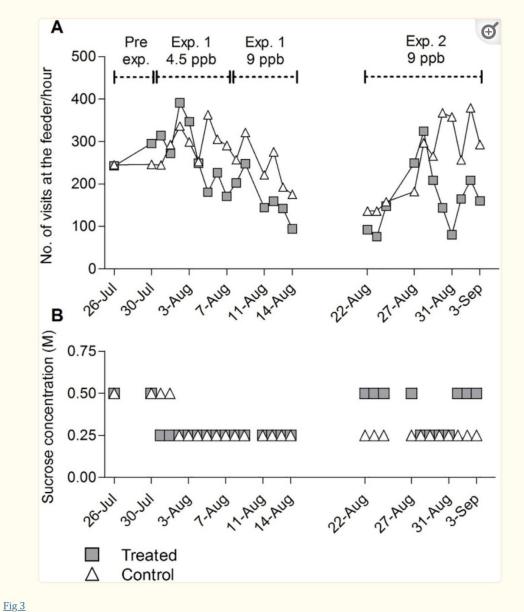
- 24% of pollen samples contained significant levels of neonics.
- 14% of plant tissue samples contained significant levels of neonics.

Active Ingredient	Field/Soil Half-life (days)	LD50 Contact (µg/bee)	LD50 Oral (µg/bee)	LOEC Contact (µg/bee)	LOEC Oral (µg/bee)
Acetamiprid	3	8.1	15	0.1'	0.1*
Clothianidin	121	0.044	0.0079	0.0022*	0.0005-0.0009
Dinotefuran	75	0.03	0.04	0.0075'	NA
Imidacloprid	174	0.032	0.0037	0.0001*	0.0001-0.0015
Sulfoxaflor	2.2	0.38	0.15	NA	NA
Thiacloprid	18	26	18	NA	0.0013*
Thiamethoxam	39	0.02	0,005	0.0001-0.004	0.0004-0.002

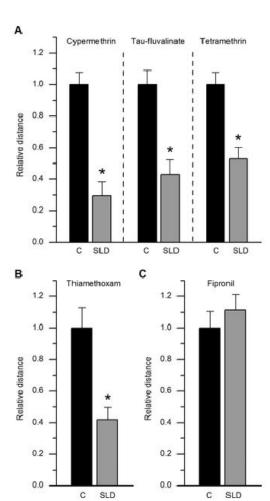

Half-life and LD₅₀ data transferred from \$1 Appendix, and LOEC data from \$2 Appendix.

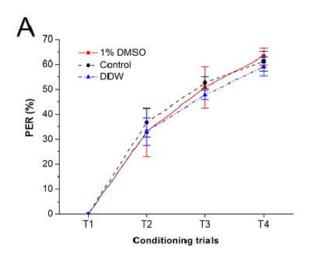
NA Not available

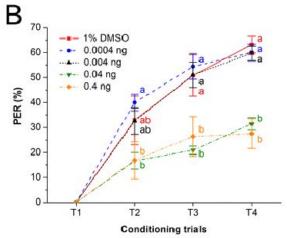

https://doi.org/10.1371/journal.pone.0220029.t003


^{*} No range available.

Sublethal effects


Imidacloprid




Foraging activity and required sucrose concentrations at the control and treated feeders.

(A) Number of visits per hour recorded on the same days (n = 27 days) during the pre-exposure time in experiment 1 (4.5 ppb and 9 ppb) and experiment 2 (9 ppb) at both control (triangles) and treated feeders (squares). The foraging activity of the treated bees is significantly reduced by exposure to clothianidin (ANOVA of lm, P < 0.05). (B) Sucrose concentrations used in order to keep a similar number of foragers coming regularly to the control and treated

2511 20 2

Synergistic effects

APHIS National Honey Bee Survey

Lab Diagnostic Results

Table 2: Pest Results

Your Value	Pest	Notes
1021	Sample size (# of bees)	Total number of bees in alcohol sample
4	Total <i>Varroa</i> mites counted	Total number of Varroa mites counted in entire sample.
0.4	Varroa load (mites per 100 bees)	A frequently occuring external parasite that reproduces in brood cells and vectors viruses
0.8	Nosema load (millions of spores per bee)	Nosema spore count is determined by microscopy; Nosema is a unicellular gut parasite that produces spores
- -	Apis cerana	Asian honey bee that can be an invasive pest. They are not known to be in the U.S.
-	Tropilaelaps spp. mites	Tropilaelaps mites are parasitic mites native to Asia. They are not known to be in the U.S.
All I	·	

The table above indicates the results of your colonies' in-lab microscopic and visual inspections conducted at the University of Maryland. This report summarizes the alcohol sample size, the *Varroa* mite count, the *Nosema* spore load, and any *Apis cerana* and *Tropilaelaps spp.* mites found. *Varroa* mite counts that exceed 3 mites per 100 bees are thought to cause damage, and colonies exceeding this threshold should be treated to reduce mite loads as soon as possible. *Nosema* spore counts in excess of 1 million spores per bee are thought to cause damage, and colonies with infection levels above this threshold should be considered for treatment depending on the season. For the most updated seasonal threshold monitoring and treatment options, see:

Deformed wing virus

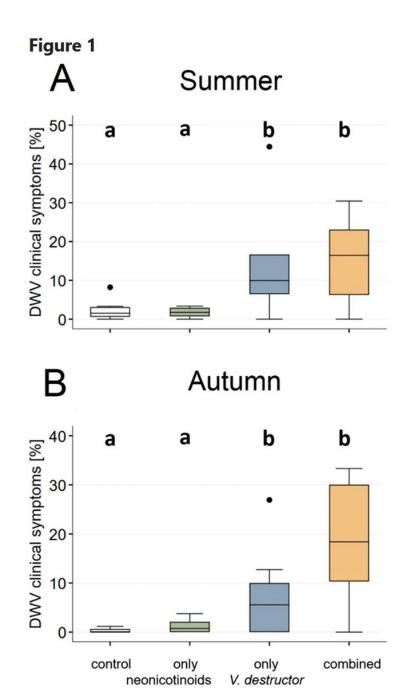
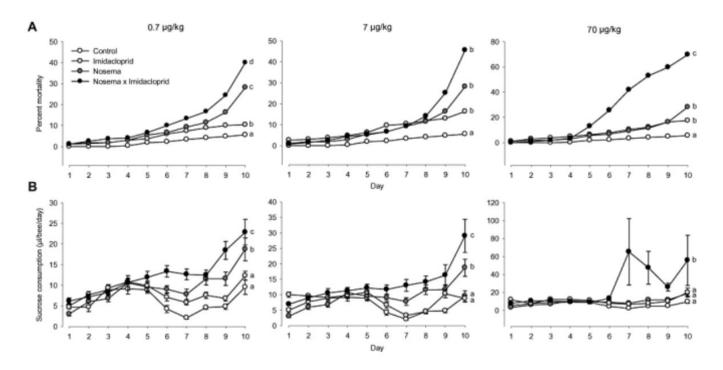
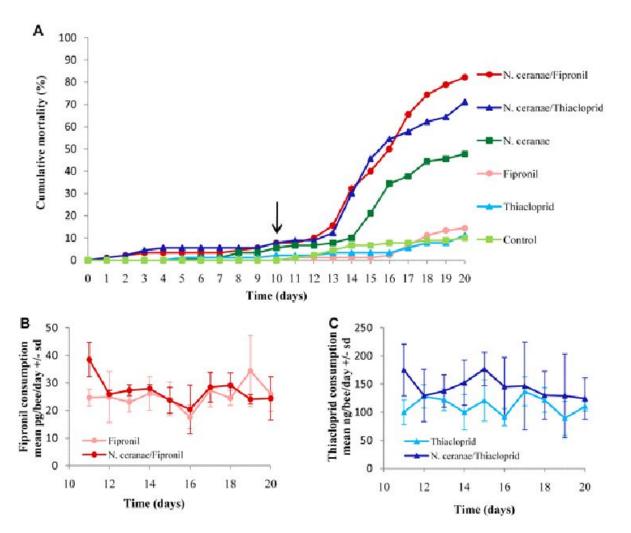
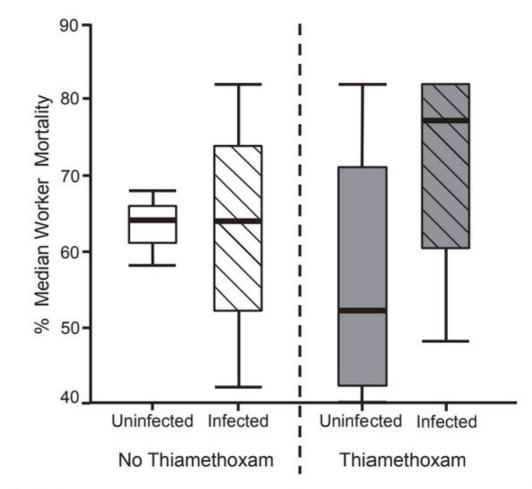





Fig. 1

Effect of *Nosema* infection and/or exposure to imidacloprid on bee mortality and energetic demands. A. Effect on mortality. Mortality is expressed as the percentage of cumulated number of dead bees per cage and per day (n = 270 bees). Three colonies were analysed, with three cage replicates for each colony (n = 30 bees per cage). Each letter indicates significant differences between treatments (P < 0.05). B. Effect on energetic demand. Sucrose consumption is expressed as the amount of sucrose solution (50% w/v, ad libitum delivery) consumed per day and per bee (n = 30 bees per cage) during the 10 h of treatment. The same cages as in A were analysed. Each letter indicates significant differences between treatments (P < 0.05).

Fig. 2. Worker mortality was higher in individuals exposed to the pathogen N. apis and the neonicotinoid Thiamethoxam than in bees exposed to a single stressor or controls. For statistical details see Table 2, bars show median average mortalities (%) \pm quartiles.

Queens and colony strength

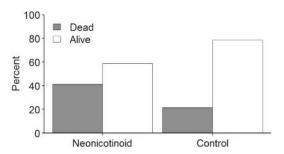
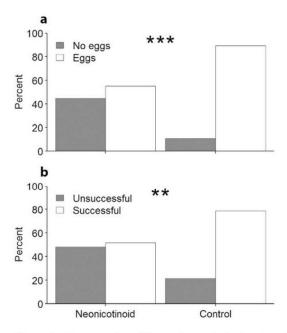
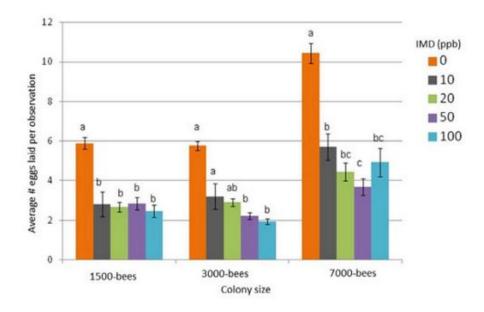
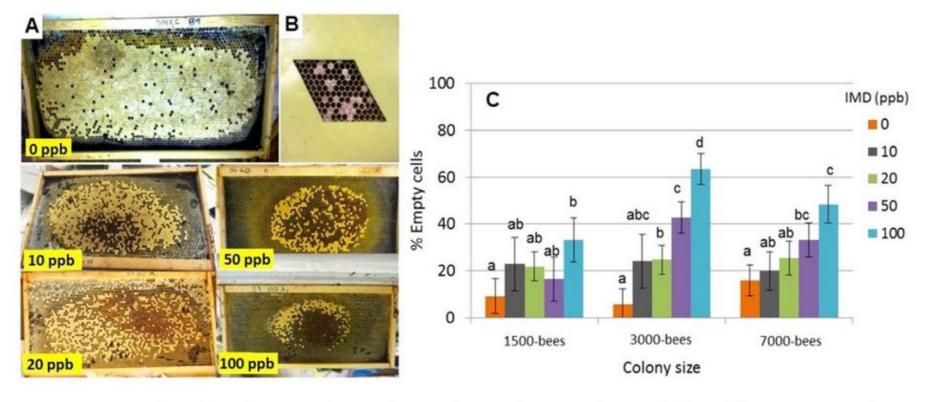
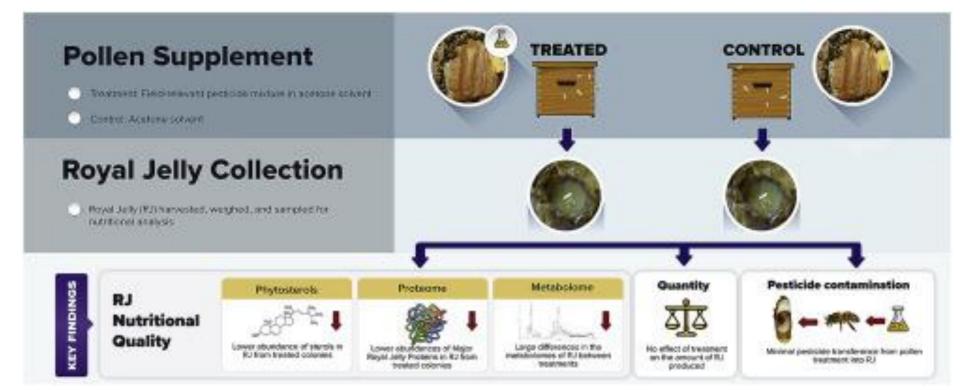
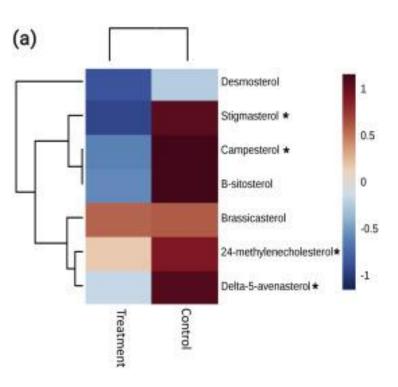



Figure 1. Queen survival after 4 weeks. Percent honey bee queens that were alive after 4 weeks. No significant difference was observed between treatments. $*P \le 0.1$, $**P \le 0.05$, $***P \le 0.01$ (comparison with Controls).

.....

Figure 2. Queen oviposition and survival after 4 weeks. (a) Percent of honey bee queens that oviposited (*i.e.* laid worker eggs). (b) Percent of honey bee queens that were alive and had produced diploid offspring by the end of the experiment (= Successful). Significant differences between treatments denoted by $*P \le 0.1$, $**P \le 0.05$, $***P \le 0.01$.

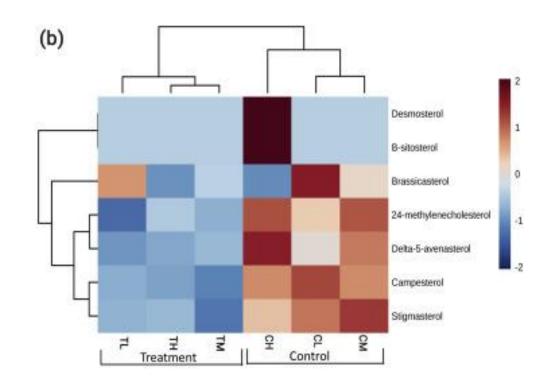
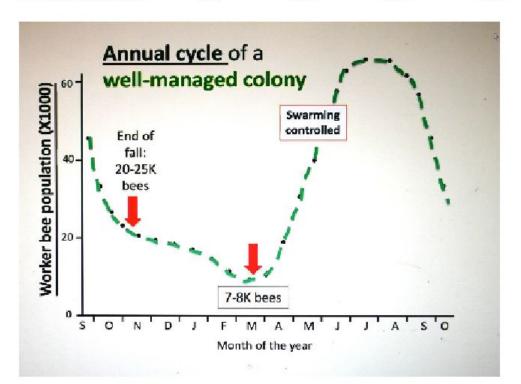

Figure 1. Average (SE) number of eggs laid by queens per 15 minute observation period pooled over three week chronic exposure of imidacloprid (IMD) (0, 10, 20 50, and 100 ppb) in 1500-, 3000-, and 7000-bee colonies ((dose*size*week) interaction: $F_{16,1053} = 0.93$; p = 0.54; (dose*size) interaction: $F_{8,1053} = 6.17$; p < 0.0001). Different letters denotes significant statistical differences among treatment levels within each colony size at $\alpha < 0.05$. Results indicate that queens in untreated colonies laid significantly more eggs than queens in treated colonies at all colony sizes.

Figure 3. Examples of brood patterns from colonies chronically exposed to imidacloprid (0, 10, 20, 50 and 100 ppb) during brood rearing illustrating a dose-dependent effect where the amount of empty cells in a given brood area increases with treatment concentration (**A**); parallelogram containing 100 cells used to standardize brood pattern measures (**B**); and the average percentage (SE) of cells not containing pupae (empty) in a brood area of 100 cells separated by colony size (1500, 3000, and 7000 bees) and imidacloprid (IMD) dose (0, 10, 20, 50 and 100 ppb) (dose: $F_{4,39} = 10.9$; p < 0.0001; colony size: $F_{2,39} = 2.1$; p = 0.14; interaction effect: $F_{8,39} = 1.3$; p = 0.3). Greater % of empty cells indicates worse brood patterns and overall brood health (**C**). Letters denote statistically significant differences among treatment levels within each colony size at $\alpha < 0.05$. Results indicate significantly worse brood pattern (more empty cells), particularly at higher treatments (50 and 100 ppb), compared to untreated colonies.



Population data and normal dwindling calculations from Gard Otis, University of Guelph Graph below

	Normal summer dwindling in healthy colony ave (8,750 bees per month)	Colony population w/ dwindling rate increased + 3% or reduction in queen productivity - 3%	Colony population w/ dwindling rate increased + 2% or reduction in queen productivity - 2%	Colony population w/ dwindling rate increased + 1% or reduction in queen productivity - 1%
Starting ave peak population Jul 15	60,000	60,000	60,000	60,000
Aug 15	51,250	49,713	50,225	50,738
Sept 15	42,500	39,734	40,646	41,568
Oct 15	33,750	30,054	31,258	32,489
Starting Population at the "end of Fall" (~Nov 15) (Gard Otis data)	25,000	20,665	22,057	23,502
	Normal Dwindling			
	Nov-Mar in healthy colony ave (4,375 bees per month)			
Dec 15	20,625	15,801	17,329	18,936
Jan 15	16,250	11,084	12,695	14,415
Feb 15	11,875	6,507	8,153	9,940
Ending population ~March 15	7,500	2,068	3,703	5,509

VBA recommends:

- Eliminate prophylactic use of systemic pesticide treated seed.
- Only plant pesticide coated seed when IPM testing reveals a pest problem.
- Choose the least toxic pesticide for the application.
- Phase out Nitroguanidine Neonics completely within 2-3 years.

sample_type	File.Name	Client.ID2	Massg.	Thiamethoxam	Clothianidin	Imidacloprid	Acetamiprid	Thiacloprid
Pollen (trap)	2022-04-13_040	S041706	5.05	NA	NA	NA	NA	NA
Pollen (trap)	2022-04-13_041	S041707	4.93	NA	NA	NA	NA	NA
Pollen (trap)	2022-04-13_042	S041708	5.04	NA	NA	NA	NA	NA
Pollen (trap)	2022-04-13_043	S041709	5	NA	NA	NA	NA	NA
Pollen (trap)	2022-04-13_044	S041710	4.95	0.202020202	0.606060606	NA	NA	NA
Pollen (trap)	2022-04-13_045	S041711	4.62	NA	NA	NA	NA	NA
Pollen (trap)	2022-04-13_046	S041712	5.07	NA	NA	NA	NA	NA
Pollen (trap)	2022-04-13_047	S041713	5.06	NA	NA	NA	NA	NA
Pollen (trap)	2022-04-13_048	S041714	5.03	NA	NA	NA	NA	NA
Pollen (trap)	2022-04-13_049	S041715	5.02	0.199203187	NA	NA	NA	0.13346613
Pollen (trap)	2022-04-13_050	S041716	5	NA	NA	NA	NA	NA
Pollen (trap)	2022-04-13_051	S041717	4.97	NA	NA	NA	NA	NA
Pollen (trap)	2022-04-13_052	S041718	4.96	NA	NA	NA	NA	NA
Pollen (trap)	2022-04-13_053	S041719	0.2591	0.270165959	NA	NA	NA	NA
Pollen (trap)	2022-04-13_054	S041720	4.98	NA	NA	0.602409639	NA	NA
Pollen (trap)	2022-04-13_055	S041721	5.04	NA	NA	0.595238095	NA	NA
Pollen (trap)	2023-04-10_SM_	I SM_001	4.8132	NA	5.31	NA	NA	NA
Pollen (trap)	2023-04-10_SM_	I SM_010	4.7057	NA	NA	NA	NA	NA
Pollen (trap)	2023-04-10_SM_	I SM_011	4.821	NA	NA	NA	1.18	NA
Pollen (trap)	2023-04-10_SM_	I SM_012	5.0375	NA	NA	NA	NA	NA
Pollen (trap)	2023-04-10_SM_	I SM_013	5.0648	NA	NA	NA	NA	NA
Pollen (trap)	2023-04-10_SM_	I SM_014	4.5683	NA	NA	NA	NA	NA
Pollen (trap)	2023-04-10_SM_	I SM_015	4.7021	NA	NA	NA	NA	NA
Pollen (trap)	2023-04-10_SM_	SM_016	4.6379	NA	NA	NA	NA	NA
Pollen (trap)	2023-04-10_SM_	SM_017	4.5091	NA	NA	NA	NA	NA
Plant Tissue	2023-04-10_SM_	SM_018	7.4533	NA	NA	NA	NA	NA
Plant Tissue	2023-04-10_SM_	SM_019	6.9484	NA	NA	NA	NA	NA
Pollen (trap)	2023-04-10_SM_	I SM_002	4.9198	NA	1.361843977	NA	NA	NA
Plant Tissue	2023-04-10_SM_	SM_020	6.5574	NA	NA	NA	NA	NA
Plant Tissue	2023-04-10_SM_	SM_021	5.2068	NA	NA	NA	NA	NA
Plant Tissue	2023-04-10_SM_	SM_022	7.6986	NA	NA	NA	NA	NA
Plant Tissue	2023-04-10_SM_	I SM_023	6.2717	NA	1.068290894	NA	NA	NA
Plant Tissue	2023-04-10_SM_	I SM 024	8.8519	NA	NA	NA	NA	NA

References

Berens et al 2021

Williams et al 2015

Wu Smart and Spivak 2016

Tison et al 2020

Girolami et al 2012 and 2009

Charreton et al 2015

Milone et al 2021

Grassl et al 2018

Alaux et al 2010

Tosi et al 2017

Vidau et al 2011

Sandrock et al 2014

Piironinen and Goulson 2016

Yang et al 2012