Surface Water Monitoring for Neonicotinoids 2017-2021

Methods

Surface Water Collection Sites (Routine Sampling and Post-Rainfall Event Sampling), 2017-2021

Northwest	North/Central						
Hungerford Brook (Highgate)	Otter Creek (Middlebury)						
Jewett Brook - 01 (Lower Newton Road St. Albans) ^a	Middlebury River (Middlebury)						
Jewett Brook - 02 (Lower Newton Road St. Albans)	Winooski River (Middlesex)						
Mill River Tributary (Georgia)	Lamoille River (Morristown)						
Alburgh Center Lake Champlain (Alburgh)	Little Otter Creek (Ferrisburgh) ab						
Missisquoi Bay Lake Champlain (Highgate)	White River, 2nd Branch (Brookfield)						
Missisquoi Bay Central Lake Champlain (Quebec)	Diamond Island Lake Champlain (Ferrisburgh)						
Lake Champlain (Burlington)	Calendar Brook (Sutton)						
Pike River (Quebec) ^a	King George Road Stream (Sutton)						
Missisquoi River (St. Albans) ^a	Station Road Stream (Sutton)						
Rock River (Highgate) ^a	Sheffield Road Culvert (Sutton)						
St. Albans Bay Lake Champlain (St. Albans)	Burke Road Culvert (Sutton)						
Northeast	Southwest						
Black River (Coventry)	Battenkill River (Arlington)						
Mississquoi River (Troy)	Mettawee River (Pawlet)						
Passumpsic River (St. Johnsbury)							
East/South	East/Southeast						
Connecticut River	(Newbury)						
Williams River (Williams River (Chester)						
West River (Bra	ttleboro)						

^a indicates post rain-fall event sample site

^{ab} indicates post rain-fall event sample site and routine sampling site

U.S. EPA Aquatic Life Benchmarks

Aquatic Life Benchmarks and Ecological Risk Assessments for Registered Pesticides | US EPA

U.S. EPA Aquatic Life Benchmarks (ppb)

Docticido	Year	CAC mumban	Fi	sh		Invertebra	Nonvascular Plants	Vascular Plants	
Pesticide	Updated	CAS number				Chronic	Chronic		
			Acute ^a	Chronic ^b	Acute ^c	NOAECd	LOAEC ^e	Acute ^f	Acuteg
Clothianidin	2016	210880-92-5	> 50750	9700	11	0.05	3.4	64000	> 280000
Imidacloprid	2017	138261-41-3	114500	9000	0.385	0.01	0.03	i	
Thiamethoxam	2017	153719-23-4	> 57000	20000	17.5	0.74	2.23	> 99000	> 90200

^aFor acute fish, toxicity value is generally the lowest 96-hour LC₅₀ in a standardized test (usually with rainbow trout, fathead minnow, or bluegill)

^bFor chronic fish, toxicity value is usually the lowest NOEAC from the life-cycle or early life stage test (usually with rainbow trout or fathead minnow)

 $^{^{}c}$ For acute invertebrate, toxicity value is usually the lowest 48- or 96-hour EC₅₀ or LC₅₀ in a standardized test (usually with midge, scud, or daphnids)

^dFor chronic invertebrates, toxicity value is usually the lowest NOAEC from a life-cycle test with invertebrates (usually with midge, scud, or daphnids)

eFor chronic invertebrates, the LOAEC from a life-cycle test with invertebrates (midge or mayfly)

^fFor acute nonvascular plants, toxicity value is usually a short-term (<10 days) EC_{s0} (usually with green algae or diatoms)

gFor acute vascular plants, toxicity value is usually short-term (<10 days) EC₅₀ (usually with duckweed)

Findings

Clothianidin detections by year and site (routine and post-rainfall event sampling), 2017-2021

			Detections		
	Samples	Detections	above benchmark ^a	Site of detection	Date of detection
				Rock River ^b	6/7/2017, 6/20/2017, 6/30/2017
2017	43	7	7	Jewett Brook - 01 ^b	6/7/2017, 6/20/2017, 6/30/2017
				Pike River ^b	6/20/2017
2010	116	2	2	Hungerford Brook	6/13/2018
2018	116	2	2	Hungerford Brook (Woods Hill Rd)	6/26/2018
				Jewett Brook - 01 ^b	6/21/2019, 10/2/2019, 10/18/2019, 11/1/2019
2019	180	7	7	Mill River Tributary	9/10/2019, 10/2/2019
				Hungerford Brook	10/2/2019
				Jewett Brook - 01 ^b	8/5/2020
2020	156	6	6	Hungerford Brook	6/1/2020, 8/6/2020, 10/6/2020
				Jewett Brook - 02	7/14/2020, 8/6/2020
2021	143	1	1	Little Otter Creek	7/6/2021

^a most conservative aquatic life benchmark (USEPA Chronic Invertebrate, 0.05 ppb) is equivalent to reporting limit

No detections exceeded the invertebrate chronic LOAEC

^b indicates post rain-fall event sample

Findings

Imidacloprid detections by year and site (routine and post-rainfall event sampling), 2017-2021

	Samples	Detections	Detections above benchmark ^a	Site of detection	Date of detection
2017	43	1	1	Jewett Brook - 01 ^b	6/7/2017
2018	116	0	0		
2019	180	0	0		
2020	156	1	1	Jewett Brook - 02	8/6/2020
2021	143	0	0		

^a most conservative aquatic life benchmark (USEPA Chronic Invertebrate, 0.01 ppb) is lower than reporting limit (0.05 ppb)

Both detections also exceeded the invertebrate chronic LOAEC

^b indicates post rain-fall event sample

Findings

Thiamethoxam detections by year and site (routine and post-rainfall event sampling), 2017-2021

			Detections		
	Samples	Detections	above benchmark ^a	Site of detection	Date of detection
				Mill River Tributary	9/14/2017
2017	42	0	0	Pike River ^b	6/7/2017, 6/20/2017, 6/30/2017
2017	43	9	0	Rock River ^b	6/7/2017, 6/20/2017
				Jewett Brook - 01 ^b	6/7/2017, 6/20/2017, 6/30/2017
2010	116	2	0	Hungerford Brook	6/13/2018
2018	116	Z	0	Hungerford Brook (Woods Hill Rd)	6/26/2018
2010	100	2	0	Jewett Brook - 01 ^b	6/21/2019, 10/2/2019
2019	180	3	0	Little Otter Creek	6/21/2019
2020	156	1	0	Jewett Brook - 02	8/6/2020
2021	143	0	0		

^a most conservative aquatic life benchmark (USEPA Chronic Invertebrate, 0.74 ppb)

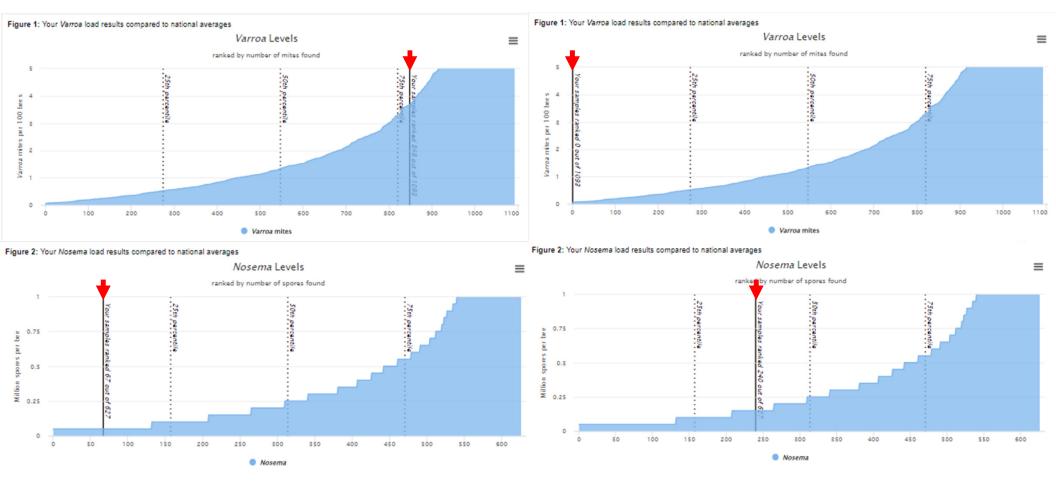
No detections exceeded the invertebrate chronic LOAEC

^b indicates post rain-fall event sample

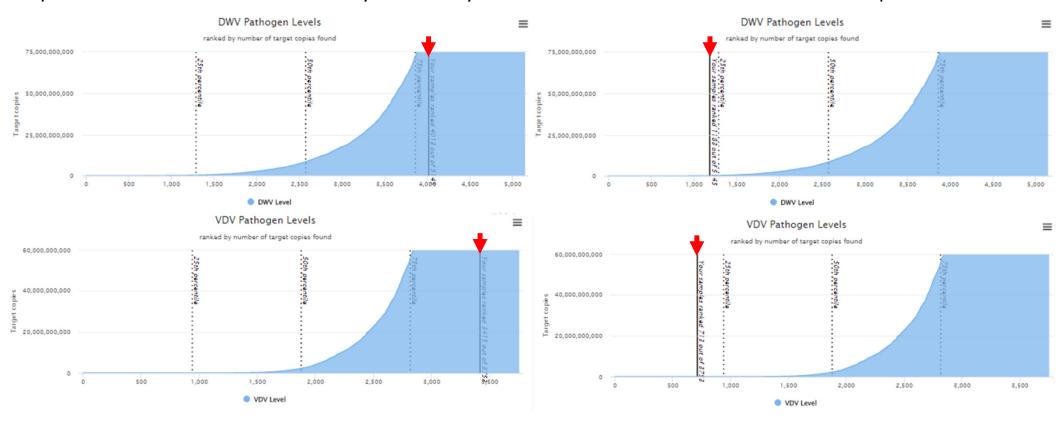
Findings & Next Steps

VT Neonicotinoid Pesticide Usage, 2017-2020

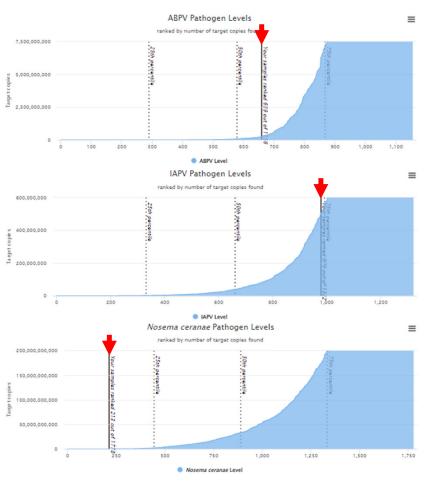
Year	Total Po	Total Pounds Active Ingredient Applied					
	Clothianidin	Imidacloprid	Thiamethoxam				
2017	9	1130	7				
2018	9	982	8				
2019	26	972	6				
2020	19	1028	10				

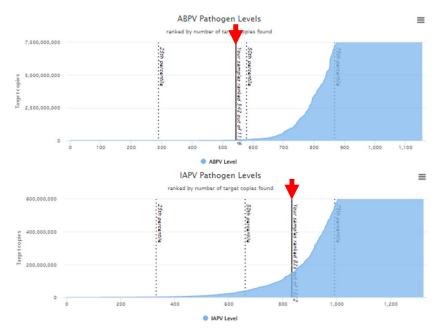

VT Seed Sales, 2020

•		
Seed Type	Treated (tons)	Untreated (tons)
Cereal Grain	0.3	7.8
Corn	848.5	68.2
Cover Crops	0.2	0
Flower and Vegetable	0	11.8
Forage-not otherwise		
specified	0.1	5.3
grass, forage and pasture	1.3	7.1
Hemp	0	0.00002
oil seed-no soybean	0	0
soybean	149.6	222.9
Turf	0	0.7


Next Steps

- Increased monitoring and expanded biota testing if we see more than occasional detections in specific water ways
 - ANR Watershed Management Division Fall 2022 bioassessment planned at Jewett Brook
- Survey neonicotinoid treated seeds planted in Vermont and identify available alternatives
- Lower reporting limit of imidacloprid detection testing so our monitoring data can more accurately be compared to benchmarks.


Snapshot of USDA APHIS National Honey Bee Survey – 2021 Health Assessment from 2 VT Beekeepers



Snapshot of USDA APHIS National Honey Bee Survey – 2021 Health Assessment from 2 VT Beekeepers

Snapshot of USDA APHIS National Honey Bee Survey – 2021 Health Assessment from 2 VT Beekeepers

USDA APHIS National Honey Bee Survey – Pesticide Results from VT Beekeepers

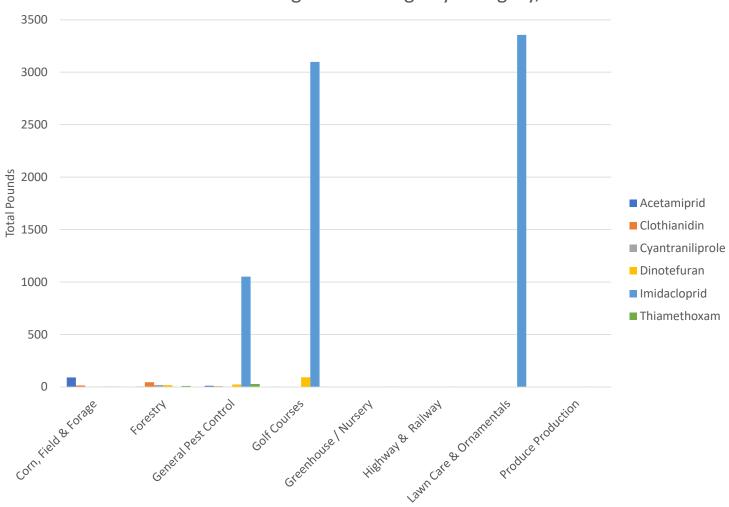
USDA APHIS National Honey Bee Survey, Vermont pesticide Results 2016 – 2020

	2016	2017	2018	2019	2020
	2,4-DMPF	2,4-DMPF	2,4-DMPF	2,4-DMPF	2,4-DMPF (240 ppb)
	Acetamiprid	Acetochlor	Acetochlor	Acetochlor	4-OH-Chlorothalonil
Pesticide Active Ingredients Detected (maximum detected concentration)	Carbendazim (MBC)	Atrazine	Atrazine	Atrazine	Acetamiprid
	Prothioconazole	Carbaryl	Boscalid	Captan	Atrazine
tra	Thymol (1990 ppb)	Carbendazim	Carbendazim	Carbaryl	Boscalid
Sen		Chlorpyrifos	Chlorothalonil	Carbendazim	Captan
ou		Chlorthal-dimethyl (DCPA)	Chlorpyrifos	Coumaphos	Carbaryl
o O		Coumaphos	Chlorthal-dimethyl	Coumaphos oxon	Chlorantraniliprole
cte		Coumaphos oxon	Coumaphos	Diphenylamine	Coumaphos
ete		Cyprodinil	Coumaphos oxon	Diuron	Coumaphos oxon
n d		Difenoconazole	DDE p,p'	Fenpyroximate	Cyprodinil
nur		Diphenylamine	DEET	Hexythiazox	Fluvalinate
xin		Diuron	Diphenylamine	Metolachlor	Fluxapyroxad
ű.		Fenamidone	Diuron	Piperonyl Butoxide	Indoxacarb
þe		Fenpyroximate	Fenamidone	Propargite	Metolachlor
act(Fluvalinate	Fenpyroximate	Thymol (4290 ppb)	Novaluron
)et		Hexythiazox	Flumeturon		Piperonyl Butoxide
ts L		Indoxacarb	Fluopyram		Pyraclostrobin
en		Iprodione	Fluvalinate		
eq		Metalaxyl	Hexythiazox		
ngı		Metolachlor	Metolachlor		
ē.		Penthiopyrad	Piperonyl Butoxide		
į		Permethrin	Propargite		
e A		Piperonyl butoxide	Thymol (15200 ppb)		
Cid		Propargite	Trifluralin		
esti		Tebufenozide			
مَ		Thymol (7750 ppb)			
		Trifloxystrobin			
		Trifluralin			

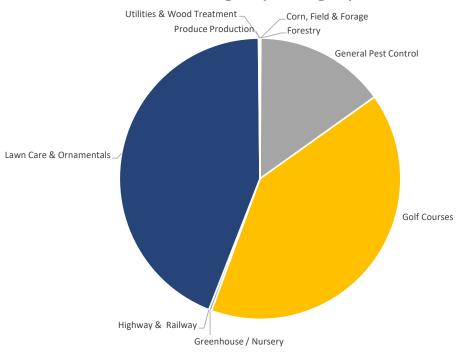
Snapshot of USDA APHIS National Honey Bee Survey – 2020 Pesticide Results from 7 VT Beekeepers

USDA APHIS National Honey Bee Survey, 2020 Vermont pesticide Results (ppb)

Pesticide	Beekeeper A	Beekeeper B	Beekeeper C	Beekeeper D	Beekeeper E	Beekeeper F	Beekeeper G
2,4-DMPF	29				240	199	34
4-OH-Chlorothalonil		Trace					
Atrazine	Trace	Trace					3
Boscalid				Trace			
Carbaryl		Trace			Trace		Trace
Coumaphos	Trace		21				
Coumaphos oxon			2				
Fluvalinate	Trace				81	Trace	26
Metolachlor	Trace						Trace
Novaluron		Trace					
Pyraclostrobin				Trace			


Glimpse Into The Hives Next Steps

- <u>Cornell Review of literature</u> finds the majority of laboratory and semi-field research demonstrate neonicotinoids can be harmful to honey bees, however the majority of field studies find only limited or no effects on honey bees
 - The impact of neonicotinoids on bumble bees is more in agreement between lab and field research studies


VT Field Observations & Next Steps

- Little to no investigations involving honey bee health impacted by neonicotinoids in the state
- Pollen monitoring for pesticides (through VAAFM) planned for Summer 2022
- National Honey Bee Survey (administered through UVM) will continue for 2022

Neonicotinoid Active Ingredient Usage by Category, 2016-2020

Neonicotinoid Usage by Category, 2016-2020

- Corn, Field & Forage
- General Pest Control
- Greenhouse / Nursery
- Lawn Care & Ornamentals
- Utilities & Wood Treatment

- Forestry
- Golf Courses
- Highway & Railway
- Produce Production