Draft 2021 Vermont Long-Range Transmission Plan

House Energy & Technology Committee

April 22, 2021

vermont electric power company

Roles & responsibilities

VELCO's vision is to create a sustainable Vermont through our people, assets, relationships and operating model.

VELCO's role is to ensure transmission system reliability by planning, constructing and maintaining the state's high-voltage electric grid.

Related responsibilities

- Serve as Local Control Center for Vermont grid operations
- Manage the Vermont System Planning Committee
- Develop and submit Vermont's Long-Range Transmission Plan

VELCO-managed assets

- 738 miles of transmission lines, 115 kV and higher
- 14,000 acres of rights-of-way
- 55 substations, switching stations and terminal facilities
- Equipment that enables interconnected operations with Hydro-Québec
- 1500 Fiber optic communication networks that monitor and control the electric system and provide the backbone for most Vermonters' high-speed data internet access
- 56-site Statewide Radio System
- 52-mile high-voltage direct current line through the Northeast Kingdom owned by Vermont Electric Transmission Company (VETCO)

Background

- Formed in 1956 by local utilities to share access to clean hydro power and maintain the state's transmission grid
- Nation's first statewide, "transmission-only" company
- Owned by Vermont's 17 local electric utilities and VLITE

2021 VT Long-Range Transmission Plan

- Plan and associated public outreach required by Vermont statute and Public Utility Commission order
- To support full, fair and timely consideration of all costeffective non-wires solutions to growth-related issues
- To inform utilities, regulators, generation/storage developers and other stakeholders in development of projects and policy

What's important to remember

- System reliability will be maintained
- Vermont is a transmission-dependent state
- Significant load growth expected winter peaking
- No major upgrades needed to serve load within the 10-year horizon
 - Presumes additional load management capability
 - Does not resolve all local concerns
- Incremental solar does not reduce load at peak hour
 - Efficiency and solar PV have provided great value
- VT utilities continue to implement innovative programs
- Further collaboration and innovation needed to achieve renewable and climate-driven requirements

TODAY'S SYSTEM

Generation mostly renewable and intermittent

Туре	MW		
Fossil (fast start	Winter	188	
units)	Summer	138	
Hydro	152		
Wind	151		
Landfill gas	9		
Biomass (wood)	72		
Utility scale solar PV	20		
Small scale solar PV	400 and growing		
Small scale farm methathydro	63 and growing		
TOTAL IN-STATE GEN SUMMER NAMEPLAT CAPACITY	~ 1005		

VT Peak load 1000 MW (winter and summer)

2019 Vermont peak days

- 2018/2019 winter peak day (1/21/19, 6:00 PM)
- Load was 969.2 MW
- Storage 6.0 _ Methane 7.1 Wind 94.1 Fossil 0.0 Hydro 57.7 Solar 2.8 Biomass 67.6 Wind Hydro ■ Solar Ties 733.8 ■ Biomass Ties Fossil Methane
- 2019 summer peak day (7/20/19, 9:00 PM)
- Load was 925.7 MW

Solar PV impacts on net loads

THE FORECASTS

Summer and Winter Medium Peak Load Forecast Components

Summer Peak Load Forecast

Winter Peak Load Forecast

Technology forecasts do not include effect of load control

Load forecast scenarios

Load forecast scenarios

	Low forecast scenario		Medium forecast scenario		High forecast scenario		All-time peak (year)	Historical 5-yr average
Year	2030	2040	2030	2040	2030	2040		
Summer	1071 MW	1185 MW	1119 MW	1294 MW	1189 MW	1430 MW	1118 MW (2006)	950 MW
Winter	1135 MW	1292 MW	1219 MW	1499 MW	1342 MW	1774 MW	1086 MW (2004/05)	970 MW

	Actual	Low forecast scenario		Medium forecast scenario		High forecast scenario	
Year	2020	2030	2040	2030	2040	2030	2040
Electric Vehicles	3912	36080	126184	71624	256417	190125	412689
Heat Pumps	4611	61185	80141	77685	149141	110185	254141

450,000 light-duty vehicles today – did not forecast trucks, buses, etc. 320,000 residential customers today

Solar PV growth scenarios

RESULTS

ABILITY TO SERVE PEAK LOADS

No major upgrades needed to serve load within the 10-year horizon

Bulk system

 No peak load concerns. Issues addressed with tie line adjustments

Predominantly bulk system

- No peak load concerns. Issues addressed by tie line adjustments and operator actions
- Acceptable loss of load (5-150 MW). As a direct consequence of outage and operator actions.

Subtransmission issues

Flagged some issues to be evaluated by distribution utilities

High-load scenario

- Minimal effect within 10 years
- After 10 years, requires non-transmission solutions to avoid transmission upgrades: load management, energy efficiency, storage, generation, ...

RESULTS

ABILITY TO
ACCOMMODATE
DISTRIBUTED
GENERATION (DG)

Location matters

- Current geographical distribution will cause additional overloads and voltage concerns
- Optimizing DG distribution avoids major upgrades
 - New information from sensitivity analysis
 - DG hosting capacity affected by controllable tie lines
 - Additional PV20 flows decrease hosting capacity by nearly 1-to-1
 - F206 flows have similar impacts but less than 1-to-1
 - Queued Projects (20 MW or greater) may alter the limiting elements, restricting DG locally and changing an optimized solution
 - Distribution transformer ratings not particularly restrictive

- Transmission overloads

Represents newly observed overloads in 2021 analysis

BED additional solar PV Map

Transmission total DG zonal limits

GMP additional solar PV Map

DER affecting substation clusters

Controls to address non-optimized system concerns

Names	Non- optimized	Optimized, no FERC projects	Excess
St Johnsbury	35.6	30	5.6
Newport	17.2	5.4	11.8
Highgate	57.9	19.8	38.1
Johnson	12.2	20	
Burlington	247.8	126.2	121.6
BED	23.7	7.5	16.2
Montpelier	90.3	76.8	13.5
Morrisville	39.9	25	14.9
Middlebury	91	50	41
Rutland	134.6	151.9	
Ascutney	59.8	73	
Southern	148.6	251.5	
St Albans	95.9	40	55.9
Central	126.9	98.7	28.2
Florence	0.6	20	
IBM	0	0	
Zonal Totals	1182	995.8	346.8

- Estimate of storage, curtailment or load management
 - 350MW for at least 4 hours (1400 MWh)

Recommendations

- Give greater weight to grid impacts when siting generation
- Bring to scale flexible load management
 - Enable inverter grid support functionality, i.e., voltage control and ride through capability
 - Enable utility management of distributed generation
 - Continue to evolve with storage
 - Establish data organizational architecture
 - Deepen/broaden fiber communications network
- Grid reinforcements (e.g., transmission, subtransmission and distribution investments)

Next outreach steps

- Continue direct, key stakeholder discussions
- Two virtual public meetings
 - Wednesday, April 28, 11am 1pm
 - Wednesday, May 5, 5pm 7pm
- Incorporate public comments in report
- Submit report to VT Public Utility Commission by July 1, 2021

www.velco.com/2021plan

