VT's Transmission Grid Reliability and Future Capability

VT House Energy and Technology Committee – February 2, 2022

vermont electric power company

Hantz Présumé Transmission Planning Manager

Generation mostly renewable and intermittent

Туре		MW
Fossil (fast start units)	Winter	188
	Summer	138
Hydro		152
Wind		151
Landfill gas		9
Biomass (wood)		72
Utility scale solar PV		20
Small scale solar PV		400 and growing
Small scale farm methane, wind, hydro		63 and growing
TOTAL IN-STATE GENERATION SUMMER NAMEPLATE CAPACITY		~ 1005

VT Peak load 1000 MW (winter and summer)

2021 VT Long-Range Transmission Plan

- Plan and associated public outreach required by Vermont statute and Public Utility Commission order
- To support full, fair and timely consideration of all costeffective non-wires solutions to growth-related issues
- To inform utilities, regulators, generation/storage developers and other stakeholders in development of projects and policy

What's important to remember

- System reliability will be maintained
- Vermont is a transmission-dependent state
- Significant load growth expected winter peaking
- No major upgrades needed to serve load within the 10-year horizon
 - Presumes additional load management capability
 - Does not resolve all local concerns
- Incremental solar does not reduce load at peak hour
 Efficiency and solar PV have provided great value
- VT utilities continue to implement innovative programs
- Further collaboration and innovation needed to achieve renewable and climate-driven requirements

No major upgrades needed to serve load within the 10-year horizon

 Bulk system
 • No peak load concerns. Issues addressed with tie line adjustments

 Prodominantly bulk
 • No peak load concerns. Issues addressed by tie

Predominantly bulk system

Subtransmission issues

High-load scenario

- No peak load concerns. Issues addressed by tie line adjustments and operator actions
- Acceptable loss of load (5-150 MW). As a direct consequence of outage and operator actions.
- Flagged some issues to be evaluated by distribution utilities
- Minimal effect within 10 years
- After 10 years, requires non-transmission solutions to avoid transmission upgrades: load management, energy efficiency, storage, generation, ...

Recommendations

- Give greater weight to grid impacts when siting generation
- Bring to scale flexible load management
 - Enable inverter grid support functionality, i.e., voltage control and ride through capability
 - Enable utility management of distributed generation
 - Continue to evolve with storage
 - Establish data organizational architecture
 - Deepen/broaden fiber communications network
- Grid reinforcements reliability, resilience & clean energy
 - Transmission and subtransmission
 - Flexible load management
 - Utility-scale and customer-located storage

