VT's Transmission system and capacity for proposed Tier II changes

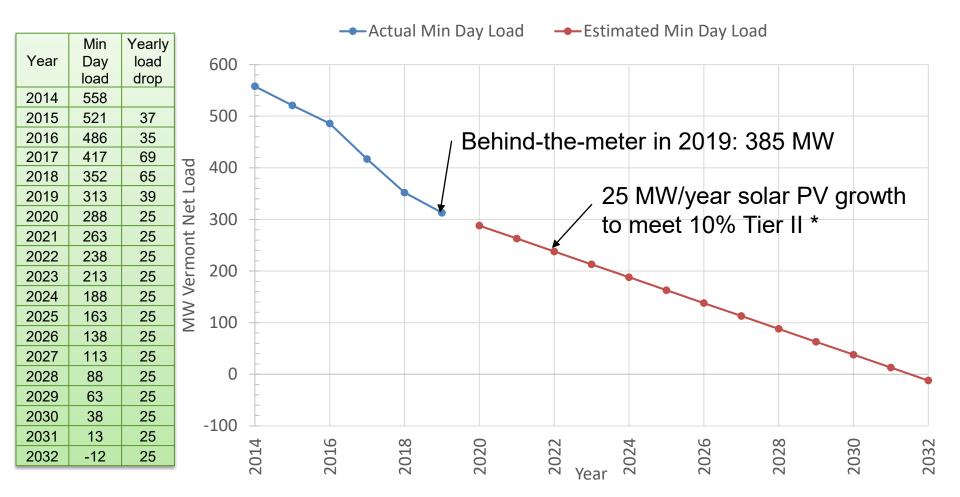
### vermont electric power company



February 14, 2020 Senate Natural Resources & Energy Committee Hantz Presumé

### **Roles & responsibilities**

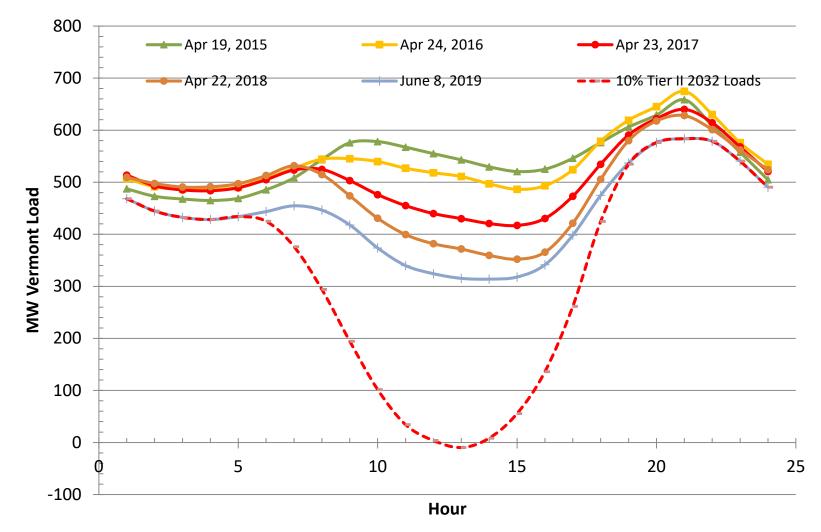
**VELCO's vision** is to create a sustainable Vermont through our people, assets, relationships and operating model.


**VELCO's role** is to ensure transmission system reliability by planning, constructing and maintaining the state's highvoltage electric grid.

### **Related responsibilities**

- Serve as Local Control Center for Vermont grid operations
- Develop and submit Vermont's Long-Range Transmission Plan
- Manage the Vermont System Planning Committee



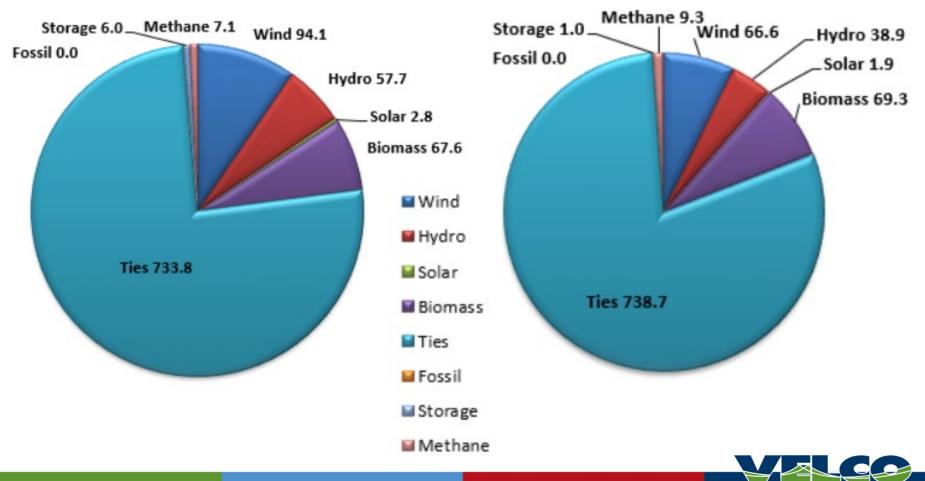

## Policy and market forces are driving load



\* https://www.iso-ne.com/static-assets/documents/2019/12/p2\_dgfwg\_vt2019.pdf



# Incremental solar PV offers no incremental benefit at the daily peak hour






## 2019 Vermont power supply on peak days

- Winter peak day (1/21/19, 18:00)
- Load was 969.2 MW

- Summer peak day (7/20/19, 21:00)
- Load was 925.7 MW



### 2018 VT Long-Range Transmission Plan in short

- Vermont system reliability depends on an interconnected grid
- 2018-2028 no peak load growth expected
- No upgrades to serve peak load; some upgrades may be needed to meet renewable goals
- Requirements of implementing two scenarios: 500 MW existing requirement &1000MW Solar Pathways vision
  - Generation curtailments
  - Load management (e.g., shifting consumption)
  - Grid reinforcements
  - Optimized location of generation
  - Storage



### **2018 results of high-solar PV scenarios**

- System impacts at 500 MW of solar PV
  - System losses increased by about 13 MW (snapshot)
  - Existing constraints aggravated (i.e., SHEI)
    - Voltage collapse in Northern VT
    - Additional overloads along Highgate-St Albans-Georgia line
    - Overloads south of Georgia depending on Plattsburgh-Sand Bar (PV20) tie flow
- System impacts at 1000 MW of solar PV
  - Much more severe impacts that are more widely distributed
  - Reviewed transmission system hosting capacity
  - Reviewed storage-only non-transmission alternative



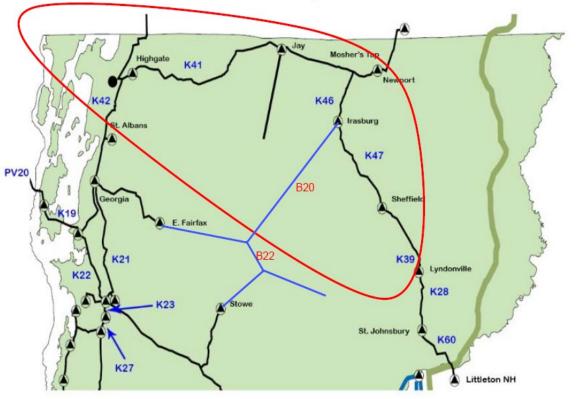
### **Storage as transmission grid asset**

- Storage does not always mean battery storage
- Storage can shift energy over a number of hours
  - Flatten daily load curve
    - Reduce system stresses and curtailments, decarbonize daily peaks when charged from renewable sources
  - Can provide market benefits (e.g., energy, capacity, regulation)
    - Rules for determining transmission system reliability benefit under FERC review
- Attributes needed for sufficiently beneficial storage
  - Significant drop in costs (installed, maintenance, repower)
  - Long term charging, i.e. at least four hours
  - Limited loss of life with frequent cycling and deep discharge
  - Grid support (voltage, frequency, inertia, orchestration)



## Minimum storage requirements to accommodate non-optimized solar PV distribution

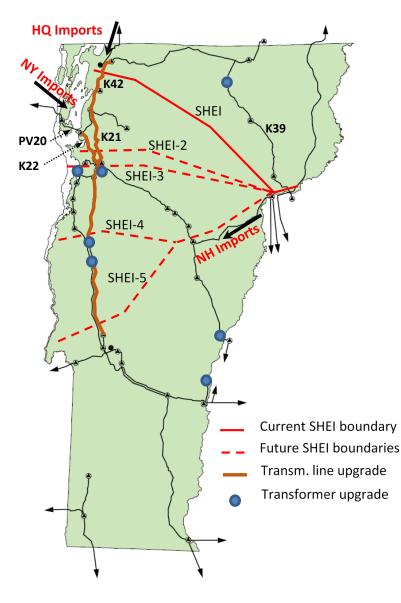
| Load zones →         | Newport | Highgate | St Albans | BED    | Burlington | Middlebury | Central |
|----------------------|---------|----------|-----------|--------|------------|------------|---------|
| Energy (MWh)         | 103.5   | 111.4    | 30.5      | 99.0   | 497.3      | 160.0      | 254.8   |
| Capacity (MW)        | 16.8    | 19.4     | 15.1      | 14.8   | 96.4       | 35.3       | 55.9    |
| Installed cost (\$M) | \$72.7  | \$79.0   | \$26.6    | \$68.9 | \$357.5    | \$117.2    | \$186.5 |


#### Cost estimate exceeds \$900M

- Capacity and energy requirements are minimum values for several reasons (not limited to):
  - Depth of discharge management and other operational constraints
  - A reality that is different from study assumptions, mainly imports from other states and the installation of FERC regulated generation projects
- Cost estimate assumes lithium ion batteries
- Storage could be many things (other battery technologies, pumped hydro, load control...)
- Cost estimate did not include other cost drivers, such as contingencies reflecting cost of unknown risk, land, financing, O&M, battery replacement, nor potential cost declines and other cost reducing value streams
- Transmission or curtailments may be more appropriate than storage in some cases
- Cost estimate method from: http://www.pacificorp.com/content/dam/pacificorp/doc/Energy\_Sources/Integrated\_Resource\_Plan/2017 \_IRP/10018304\_R-01-D\_PacifiCorp\_Battery\_Energy\_Storage\_Study.pdf



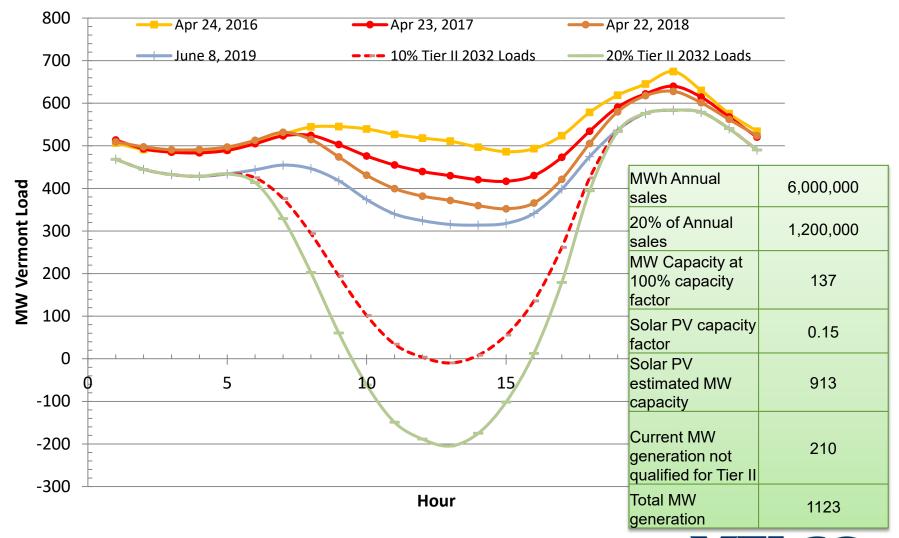
### **Constraints = curtailment**


- Sheffield-Highgate Export Interface created to monitor power flow reliability
- Export limits change dynamically
- ISO-NE controls flows by adjusting generation under operator
- Same outcome likely in more VT regions unless addressed in advance



Additional SHEI info at https://www.vermontspc.com/grid-planning/shei-info



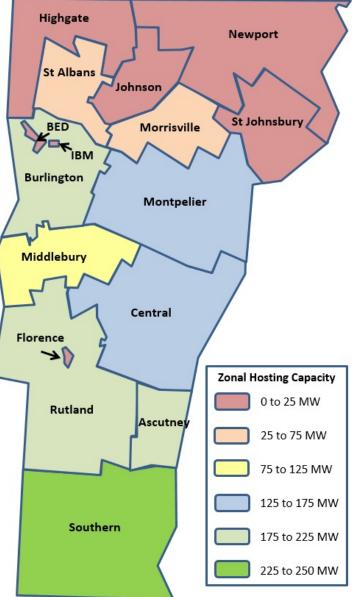

### Impacts with high solar PV scenario



- Exceeds \$300M (VT or developer cost)
- SHEI is current constraint interface
- SHEI-1 to SHEI-5 are expansions of constraint
- Timing of expansion is unknown
  - Depends on how quickly solar PV is installed in individual zones
  - Not necessarily sequential—e.g., SHEI-3 could occur before SHEI-2
  - Optimal solar PV distribution analysis gives some insights



### **Doubling Tier II - forecasted Vermont load shape**






### "Perfect world" - Transmission system's in-state generation hosting capacity

"All-optimistic" assumption scenario

| Zone names   | Gross MW<br>Ioads | MW AC<br>solar PV<br>capacity | Net MW<br>Ioads |
|--------------|-------------------|-------------------------------|-----------------|
| Newport      | 19.8              | 10.3                          | 9.5             |
| Highgate     | 23.8              | 15.5                          | 8.3             |
| St Albans    | 39.7              | 42.9                          | -3.2            |
| Johnson      | 6.6               | 16.4                          | -9.8            |
| Morrisville  | 24.3              | 50.7                          | -26.4           |
| Montpelier   | 48.6              | 104.9                         | -56.3           |
| St Johnsbury | 14.7              | 12.1                          | 2.6             |
| BED          | 39.8              | 5.6                           | 34.2            |
| IBM          | 60.6              | 20.0                          | 40.6            |
| Burlington   | 94.1              | 107.4                         | -13.3           |
| Middlebury   | 19.7              | 57.7                          | -38.0           |
| Central      | 37.6              | 91.2                          | -53.6           |
| Florence     | 22.6              | 21.2                          | 1.4             |
| Rutland      | 61.7              | 164.6                         | -102.9          |
| Ascutney     | 39.5              | 112.8                         | -73.3           |
| Southern     | 65.6              | 224.9                         | -159.3          |
| Total        | 618.7             | 1058.2                        | -439.5          |
| Losses       | 33.6              | N/A                           | 53.4            |



### "Perfect world" assumptions

- "Fortress Vermont" AC tie line imports reduced to 0 MW will not always be possible
- Voltage control installed essential to maximize distributed generation
- Sub-transmission and distribution system reinforcements are completed – If not, these concerns may limit solar PV below levels indicated in analysis
- Storage contribution allows for 5% thermal capacity overload
- Hosting capacity unclaimed by in-state projects driven by regional markets (e.g. NextEra's 20MW Coolidge Solar PV project is not included)
- Development blueprint generation will be installed "exactly" as laid out in this optimized distribution – notwithstanding constraints, such as project economics, aesthetic impacts, public acceptance, etc.
  - Maximum zonal distributed generation levels are interdependent—amount of generation in one zone will affect amount that can be installed in other zones



## The bottom line

- Reliably securing significant amounts of additional in-state, renewable generation requires:
  - Grid support from distributed resources
  - Generation curtailments
  - Load management
  - Locational alignment with grid capacity
  - Grid reinforcements
  - Storage
- VELCO will update our analyses to reflect new data (2021 LRTP)
- VELCO will work to ensure the transmission grid delivers value toward a sustainable Vermont whatever the legislative outcome

