Resilient and Connected Landscapes for Terrestrial Conservation in Vermont

Thank you to over 150 Scientists

Abundance Crisis

Mammals: Global biomass down 82%

Amphibians: 30% now T &E

Butterflies: Abundance down 35%/ 40 yr

NA Birds: Abundance down 29%

or 3 Billion birds since 1970

Nature is Dynamic

Chen et al. 2015, Science

Median residence times range from **200-700** years (overall **500** years) and are shorter during times of warming *McGuire et al. in prep*

Conserve Resilient Land and Water

Conserve a network of resilient sites and connecting corridors that will sustain North America's natural diversity by allowing species to adapt to climate impacts and thrive.

Key Ingredients

Resilient Sites

Land with many connected *microclimates* representing all physical environments

Permeable Landscape

A *connected* landscape that allows movement and facilitates range shifts

Resilient Systems

Intact habitats, unique communities and rare species populations

Conserving Nature's Stage

Representative Land

Biological diversity is highly correlated with **Land Properties** (Geology, Soil, Elevation, Topography, Hydrology)

Many Microclimates

Create climate options

Locally Connected

Allows species to move

Climate Resilience:

Microclimates

Climate Resilience:

Microclimates

Relative to
Ecoregion
and
Geophysical
Setting

Weight Category **Developed** -Low intensity 8 -Mid intensity

20

9

20

10

+1

7+

-High intensity

Roads/Linear

-Transmission

-Mine

-Major

-Minor

Climate Resilience: **Local Connectedness**

44	100	
	1.50	
	- 5-11	100
	15 49	
9400 (0)	300	
	1000	
	-1760	5.53m
		5.50
100	186	
	40.5	2000
	201	
7		
222		
		Section 1
1	300	400
2.00	36	1-26
	1	Maria

Natural Weight All Vegetation Types 1 Barrens Water (by size) 1-3*

-Railroads

-Pipelines

-Unpaved

Agriculture

- -Corn/Soy
- -Other Ag
- -Hay Pasture
- -Forestry (indust.) 4

Energy

- -Oil & Gas -Wind +1
- -Solar

Vermont: Local Connectedness

Relative to
Ecoregion
and
Geophysical
Setting

Vermont: Resilient Land

Site Resilience by Ecoregion

Resilient Land Map

Green = Land with the most microclimates in a connected landscape relative to their ecoregion and setting

Complex and Connected = Many Options

Acidic Sedimentary/ Calcareous: Equinox Highlands

Representation & Resilience

About 33% of each Geophysical Environment in each Ecoregion

Maintaining a Permeable Landscape

Climate Flow

The Gradual Movement of Populations in Response to Climate Change

The gradual movement of populations across the landscape in response to climate change **Current Rates: 11 mile** per decade North **36 feet** per decade Upslope

Climate Flow

The gradual movement of species populations in response to a changing climate

Resilient Ecosystems

CREAT BASN AL Composition SOUTHERN ROCKY MOUNTAINS: AN ECOEGIONAL ASSESSMENT AND COSS ASSESSMENT ASSESSMENT AND Exercisional Conservation Arisona - New Mexts Ecoregional Conservation Arisona - New Mexts Ecoregional Conservation Arisona - New Mexts

The Wyoming Basins

Biodiversity Assessments

Terrestrial and Marine Ecoregions of the United States

9. Utah-Wyoming Rocky Mountains

Biodiversity Assessments

VERMONT CONSERVATION DESIGN

MAINTAINING AND ENHANCING AN ECOLOGICALLY FUNCTIONAL LANDSCAPE

Summary Report for Landscapes, Natural Communities, Habitats, and Species

February 2018

Eric Sorenson and Robert Zaino

Core Participants:

Jens Hilke, Doug Morin – Vermont Fish and Wildlife Department
Keith Thompson – Vermont Department of Forests, Parks and Recreation
Elizabeth Thompson – Vermont Land Trust

Recognized Conservation Value

(Places with confirmed diversity or critical habitat TNC Ecoregional Plans, SWAPs, NHP)

Resilient and Connected Network

The Nature Conservancy

Eastern Conservation Science

% **of Land Area** -Resilient examples of all environments, **46**% Secured against conversion **Over 250,000** occurrences of intact habitats, rare species, unique communities **Arranged** for maximum climate flow

COLLABORATION

Land Trusts: Over 100 are using the data for decision making **Agencies**: Majority of Eastern SWAPS, Many Federal Adopters **Funders**: 37 million from Doris Duke Charitable Foundation

TNC: Division Protection Plans, USGR

Co-Benefits

56% of all Above-Ground Carbon (3.9 B tons)

75% of High Value Source Water (66+ M acres)

O2 for 1.8
Billion People

Mitigates 1.3 M Tons of Pollution (\$913 M)

Generates
~\$25 Billion Recreation

Carbon

Carbon Storage

"A single big tree can add the same amount of carbon to the forest within a year as is contained in an entire midsized tree."

Stephenson et al. 2014. Rate of tree carbon accumulation increases continuously with tree size Nature 507 (600K trees, 6 countries, 403 sp) **Luyssaert et al. 2008**. Old-growth forests as global carbon sinks. Nature 455. Sept 11 (519 published carbon flux estimates 15-800 yr stands)

Carbon Sharing

Sequestration vs Storage

Carbon Storage

"A single big tree can add the same amount of carbon to the forest within a year as is contained in an entire mid-sized tree."

"Old forests accumulate carbon for centuries and contain large quantities of it."

Stephenson et al. 2014. Rate of tree carbon accumulation increases continuously with tree size Nature 507 (600K trees, 6 countries, 403 sp) **Luyssaert et al. 2008**. Old-growth forests as global carbon sinks. Nature 455. Sept 11 (519 published carbon flux estimates 15-800 yr stands)

Natural Climate Solutions

Agriculture Native Prairie Soil Scientist Jerry Glover, shows off a perennial wheatgrass roots

Soil Carbon

Soil Organic Carbon

Steady State? Zhou et al 2017 24-year dynamics of the soil carbon in an old growth forest at China's Dinghushan Biosphere Reserve. They found that soils in the top 20-cm soil layer accumulated atmospheric carbon at an unexpectedly high rate, - 0.61 Mg C ha year.

Diversity and Carbon

56% of all Above-Ground Carbon (3.9 B tons)

75% of High Value Source Water (66+ M acres)

O2 for 1.8 Billion People

Mitigates 1.3 M Tons of Pollution (\$913 M)

Generates
~\$25 Billion Recreation

Vermont has it all

A crossroads of Connectivity

- A diverse physical landscape
- Largest concentration resilient limestone in East
- A center of terrestrial resilience
- A terrific state plan that reinforces and complements TNC network
- Relatively intact forests that store huge amounts of carbon
- A community that values nature

