A Simple Path to a Better Environmental and Economic Future for Working Lands in Vermont

February 2019

Current and Future State of Dairy

CURRENT

- Regulatory and societal pressures
- Environmental issues related to nitrogen, phosphorus, GHGs, etc.
- Erosion in consumer trust

- Provide solutions to multiple societal issues
- Incentives to drive increased adoption of on-farm sustainable actions
- Increase in consumer trust

Who is Newtrient?

NEWTRIENT

OUR MISSION

Reduce the environmental footprint of dairy and make it economically viable to do so.

How do we do it?

TECHNOLOGY CATALOG

Providing an unbiased view of today's manure management options

BUSINESS DEVELOPMENT

Advancing manure-based technologies and products

ECOSYSTEM SERVICES MARKETPLACE

Driving the adoption of a marketplace that generates both environmental and economic benefits

Newtrient's Approach for Water Quality Improvement in VT

- A market-based mechanism should be used to guide and prioritize investments to reduce nutrient loading to impaired waters
- Investments are needed to fund implementation of practices and technologies that drive improvements beyond regulatory requirements
- Methodology should provide a mechanism to prioritize projects based on ROI...water quality benefit correlated with proposed investment
- Newtrient has developed a methodology to address this critical need

Newtrient's Proposed Methodology

Newtrient Protocol + Stone Environmental Farm-PREP tool + Regulatory Entity

Step 1 Step 3 Step 5 Step 7 Step 8 Step 2 Step 4 Step 6 **Modeling to** Certification Site Modeling to **Project** Administrative **Implement** Verification of **Project** of Assessment & Establish Quantify **Summary & Project Implemented** Eligibility Baseline **Voluntary Application Review & Project** Reductions Determination (RAP's) **Practices** Decision and/or **Technology**

Regulatory Entity

- Review, prioritize and fund projects based on ROI
- 2. Oversight of Third-Party Verifiers (Step 7)
- 3. Accountability through reporting quantified water quality benefit (Step 8)

Background on Farm-P REduction Planner (Farm-PREP)

- Farm-PREP evolved out of another web-based APEX model interface developed by Stone and Texas A&M University (VT-STAR)
- The APEX model (developed and maintained by Texas A&M and NRCS) serves as the water quality/agronomic modeling engine for Farm-PREP
- Farm-PREP simplifies the use of APEX by pre-processing many required inputs (soils, topography, weather)
- Farm-PREP includes an extensive database of agronomic practices that were developed in collaboration with UVM Extension, crop consultants and technical advisors

Farm-PREP Tool Inputs

Field Level Inputs

- Soil Information
- Crop Rotations, Tillage and Manure Application
- 3. Structural BMP's

Farm-PREP Tool Outputs

Outputs

- 1. Field level calculations and outputs that are aggregated to total farm
- Model uses site specific data and realtime APEX calculations
- Model functionality includes a scenario optimizer to identify field level modifications to meet target P reductions
- 4. Project underway to improve calibration and validation based on Vermont edge of field data

Farm-PREP Provides the Reduction Eligible for Investment

Proposed Investments would Equal the "Benefits" Gap

Annual Cost and Benefits Gap of Practice/Technology Adoption

Costs to the Farmer

Practice and/or Technology
Installation Costs

Practice and/or Technology
Ongoing Costs

Benefits to the Farmer

BENEFITS GAP

Cost Avoidance

on Manure
Handling
&
Other
Accumulated
Benefits

Project Application

- Outline annual costs and benefits for project
- Proposed Investment would be help close the "benefit" gap
- Quantified "P" reduction from Farm-PREP tool
- Allows for assessing each project in terms of \$/Ib of P Reduction on an annual basis

Project Prioritization and Funding

- Regulatory Entity would prioritize and fund projects based on highest ROI (\$/Ib) and other relevant criteria (e.g., tactical basin planning priorities or other co-benefits)
- Project funding could be structured based on a "Pay for Performance" model:
 - Funding set aside in annualized amounts that are paid based on ongoing performance (continuation of practice and/or technology adoption)
 - Ongoing Third-Party Verification provides regulatory entity the basis to Certify the Reductions and issue annual payment

Opportunity for Dairy Market-based Solutions

Lake Champlain Stormwater Reductions – Phosphorus

STORMWATER REDUCTION (lbs/yr)	MUNICIPALITY REDUCTION COST = \$2,500 (lb/yr)	DAIRY REDUCTION COST = \$100 (lb/yr)
54,000 lbs	\$135 MM	\$5.4 MM
NEED	CURRENT REDUCTION COST	AG SOLUTIONS COST

Summary

- Newtrient's proposed methodology provides a mechanism to ensure that public investments deliver the highest ROI and corresponding water quality benefit
- Farm-PREP tool provides a high degree of confidence that water quality benefit will be achieved
- Pay-for-Performance funding structure ensures continuation of practice and/or technology adoption
- Investments provide economic incentive for adoption of practices and technologies that otherwise will not occur
- Methodology can be evolved longer-term to allow for other market participants to achieve compliance with lower costs options

APPENDIX

Existing water quality trading programs

Newtrient's Market-based Approach

ENVIRONMENTAL SERVICES
CLEARINGHOUSE

VERIFIED ENVIRONMENTAL CREDITS

CERTIFIED COMPLIANCE CREDITS

Manure P in VT Portion of Lake Champlain Basin

Farming Operation	Manure P Generation (lbs/yr)	6% Leakage of Manure P to Lake Champlain (lbs/yr)	50% Reduction of P Leakage with Technology (lbs/yr)
LFOs (22)	1,609,229	96,554	48,277
MFOs (148)	3,514,566	210,874	105,437
Subtotals	5,123,795	307,428	153,714

SUPPLY

Stormwater TMDL Costs Compared to Manure Technology for Achieving Lake Champlain TMDL

Baseline Stormwater P Loads (2001-2010) (lbs/yr)	"Developed Land" TMDL WLA for Stormwater (lbs/yr) ¹	Stormwater P Load Reductions Needed (lbs/yr)	Stormwater BMP Load Reduction Cost at \$902/lb ²	Stormwater BMP Load Reduction Cost at \$4,067/lb ²	Savings with Delivered Ag P Reductions at \$225.67/lb ³ Compared to LOW SW Cost	Savings with Delivered Ag P Reductions at \$225.67/lb ³ Compared to HIGH SW Costs
251,327	197,005	54,322	\$49M	\$221M	\$37M	\$209M

Demand

³ Highest cost manure separation technology. (Costs range from \$81-225/lb P delivered to Lake Champlain at 6% leakage and a load reduction of 50% following technology installation and new operational and manure P field management.)

¹ Lake Champlain TMDL

² Vermont Department of Environmental Conservation. 2014. Vermont Lake Champlain phosphorus TMDL Phase I Implementation Plan. Prepared for Governor presentation.