Vermont Power Sector Update

Riley Allen, Deputy Commissioner Ed McNamara, Planning Director

Topics

- Orientation of regulated entities and policies
- Regional markets and transmission
- Vermont's electric system and trends
- Implications for system costs and ratepayer impacts

Regulated Entities and Policies

Who is the Public Service Department?

The Public Service Department = represents the interests of the people of the state as a whole

- Represents public interest in utility cases
- Provides long-range planning for the state's energy and telecomneeds
- Ensures all Vermonters share in the benefits of modern communications
- Administers federal energy programs
- Resolves utility customer complaints
- Informs public about utility-related matters
- Makes and administers power purchase contracts

Commissioner June E. Tierney

Share of VT load

Vermont Electric Utilities

- 1 IOU (serving ¾ of VT load or 260,000 customers)
- 2 Coops
- 14 Municipals
- 1 transmission utility (VELCO)

Vermont Renewable Deployment

- 300 MW Solar PV
- 150 MW Wind
- 200 MW In-State Hydro
- 70 MW Biomass
- 8 MW Landfill Gas
- 5 MW Methane Digesters
 1000 MW Peak

Energy Efficiency Utilities

- Efficiency Vermont (EVT)
- City of Burlington Electric Department
- Vermont Gas Systems

- Funding source and Responsibilities
 - Responsible for reducing electric and thermal usage
 - Funded by energy efficiency charge on customers' bills

State energy policy

30 V.S.A. § 202a

It is the general policy of the State of Vermont:

- (1) To assure, to the greatest extent practicable, that Vermont can meet its energy service needs in a manner that is adequate, reliable, secure, and sustainable; that assures affordability and encourages the State's economic vitality, the efficient use of energy resources, and cost-effective demand-side management; and that is environmentally sound.
- (2) To identify and evaluate, on an ongoing basis, resources that will meet Vermont's energy service needs in accordance with the principles of least-cost integrated planning; including efficiency, conservation and load management alternatives, wise use of renewable resources, and environmentally sound energy supply.

Requirements in Statute

Renewable Energy Standard (30 V.S.A. § 8005)

- Total renewable energy (55% growing to 75%)
 - Any size/vintage renewable resource, contract and attribute-based system provided it delivers into New England
- Distributed generation (1% to 10%, carve-out of Tier 1)
 - Under 5 MW, commissioned after 6/30/15, connected to VT distribution
- Energy transformation (2% to 12%, not a carve-out)
 - Fossil fuel reduction

Standard Offer Program (30 V.S.A. § 8005a)

Long-term contracts for resources 2.2 MW or less, up to 127.5 MW

Net Metering (30 V.S.A. § 8010)

Compensation based on residential rate with adjustors for siting and RECs

Goals in Statute

- Meet energy needs in a reliable, secure, sustainable, and affordable manner. (30 V.S.A. § 202a)
- Renewable policies that promote economic benefit, efficient use of resources, stable prices, market development, air and water quality, grid stability, climate change mitigation, and diversity of resources. (30 V.S.A. § 8001)
- 25% renewable by 2025. (10 V.S.A. § 580(a))
- 50% GHG emission reduction by 2028, and 75% (if practicable) by 2050. (10 V.S.A. § 578(a))
- Building efficiency weatherize 25% of housing stock by 2025.
 (10 VSA. § 581)

Regional Context: Vermont as a part of ISO New England

ISO New England

- Regulated by the Federal Energy Regulatory Commission
- Responsible for:
 - Designing and implementing wholesale electricity markets
 - Day-ahead and Real-time Energy Markets, Forward Capacity Market, Ancillary Services
 - Operating the New England transmission system
 - VELCO owns but operation is under the direction of ISO-NE
 - Power system planning to meet federal reliability standards

Source: ISO-NE Regional System Plan 2017

https://www.isone.com/systemplanning/systemplans-studies/rsp

Market value in 2016—\$5.4 billion total; \$4.1 billion energy market; \$1.2 billion capacity market; \$0.1 billion ancillary services market:

Approximately 58.35 billion in transmission investment since 2002; approximately 54.0 billion planned.

Source of New England production cleaner with natural gas and renewables

Sources of Electricity Production

Major shift from oil and coal to natural gas over the past 17 years

Source: ISO-NE

https://www.iso-ne.com/static-assets/documents/2018/02/ne_power_grid_2017_2018_regional_profile.pdf

Regional declining loads and peak

Electricity Demand Growth Has Slowed in New England

Compound annual growth rates for peak demand and overall electricity use, net of energy efficiency and solar photovoltaic (PV), 2017–2026

Source: ISO-NE

New England Wholesale Prices Spike in Winter

Source: VT PSD

New England regional market price has been declining

Source: 2016 Report of the Consumer Liaison Group; *2017 data is preliminary and subject to resettlement

Note: Forward Capacity Market values shown are based on auctions held roughly three years prior to each calendar year.

https://www.iso-ne.com/static-assets/documents/2017/01/20170130_stateofgrid2017_presentation_pr.pdf

Vermont utilities are hedged for generation

- ~ 20% of generation from owned units
- Long term contracts
 - System power contracts (e.g., HQ)
 - Unit contingent contracts (mostly weather contingent like wind and solar)
- Standard offer contracts and net metering

Vermont Electric Prices

Many factors go into customers' electric bills

Source: VT PSD

Vermont retail prices are currently low relative to other states in the region, save Maine

Electricity prices in Vermont are below the region but well above national

Vermont kWh Sales

Retail sales in Vermont have been flat to declining since 2005..., sales in 2016 below 2001

Forecast is for continued flat and below historic levels

PROJECTED VERMONT SUMMER PEAK LOAD AND ITS COMPONENT FORECASTS

Source: VELCO, Draft Long Range Transmission Plan https://www.vermontspc.com/libra ry/document/download/6059/2018 Plan draaft toVSPC.pdf

Vermont has developed more solar than New Hampshire, Rhode Island and Maine combined

ISO-NE Forecasts Strong Growth of Solar PV Resources

Values are alternating current (AC) nameplate capacity (MW)

Source: Final 2017 PV Forecast, ISO-NE, May 2017 *Start of 2018

Source: ISO-NE, https://www.iso-ne.com/static-assets/documents/2018/02/ne_power_grid_2017_2018_state_profile.pdf

Policy drivers of sales trends

Down

- Energy efficiency
- Net metering
- Federal appliance standards

Up

- Beneficial electrification
 - Custom projects (electrifying sugaring operations and saw mills)
 - Electric Vehicles
 - Cold Climate Heat Pumps

Moving Forward

The practical affect of some programs is that there is re-spreading of some costs...

- Average Rates ~ 15 cents/kWh
- Marginal/avoided costs/ratepayer costs/societal costs~
 - Energy 3-4 cents/kWh
 - FCM 1.5 2 cents/kWh
 - RNS 1.5 2 cents/kWh
 - Carbon at \$100/ton ~ \$5/MWh or ½ cent per kWh (assumes 10% regional power)
 - T&D negligible
 - Total avoided ratepayer costs 6-8 cents per kWh
- Margin lost on sales to be re-spread ~ 7 8 cents per kWh

Challenges for integrating solar looking forward...

Challenges associated with export of energy from northern Vermont ...

Figure 1: The Sheffield-Highgate Export Interface (SHEI)

https://www.vermontspc.com/grid-planning/shei-info

System Planning is Increasing in Importance

- Vermont has several planning requirements in place:
 - Integrated Resource Plans are required of utilities
 - VELCO Long-Range Transmission Plan
 - Demand Resources Plan required of energy efficiency utilities
- Location Matters
 - Generation or energy efficiency in a constrained area provides positive value to the individual customer but likely negative value to the system (and to other customers)
 - Beneficial Electrification will have more value in a generation constrained area than elsewhere
- Need to Choreograph Load and Generation (Timing Matters)
 - Utilities electrification efforts should not increase T&D costs
 - Charging an EV after dark doesn't help ease generation constraints caused by solar generation

Questions?

National and global trends, declines in wholesale electricity from impacts from shale gas

Source: EIA https://www.eia.gov/dnav/ng/hist/n3045us3m.htm

Shale gas production in the US...., demand is roughly 75 Bcf/d

Monthly dry shale gas production billion cubic feet per day

survey data. State abbreviations indicate primary state(s).

Source: EIA

Coal is on the decline, natural gas on the rise

Source: EIA

Transmission costs have been on the rise nationally

"Price of Solar Energy in the United States Has Fallen to 5¢/kWh"

Source: LBNL http://newscenter.lbl.gov/2015/09/30/price-of-solar-energy-in-the-united-states-has-fallen-to-

DOE 2020 targets for solar (sans incentives) met in 2017

SunShot Progress and Goals

*Levelized cost of electricity (LCOE) progress and targets are calculated based on average U.S. climate and without the ITC or state/local incentives. The residential and commercial goals have been adjusted for inflation from 2010-17. Source: DOE

https://www.energy.gov/eere/s olar/articles/2020-utility-scale-solar-goal-achieved

Major components of cost of electricity, US

Major components of the U.S. average price of electricity, 2014

Source: U.S. Energy Information Administration, Annual Energy Outlook 2015, Reference Case, Table 8: Electrical supply, disposition, prices, and emissions

Utility scale solar PV capital cost estimates
US\$/kW-AC, assuming 1.3 inverter DC-AC loading ratio

Source: NREL, EIA, Lazard, JPMAM. April 2017.

Lithium ion energy storage costs: EV battery packs vs utility scale grid storage, capital cost per kWh

Source: Lazard, Nykvist, et. al., Green Car Reports, Utility Dive. April 2017.

Transmission investments have been on the rise regionally and nationally

Source: EIA, https://www.eia.gov/todayinenergy/detail.php?id=34892