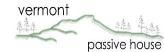
vermont

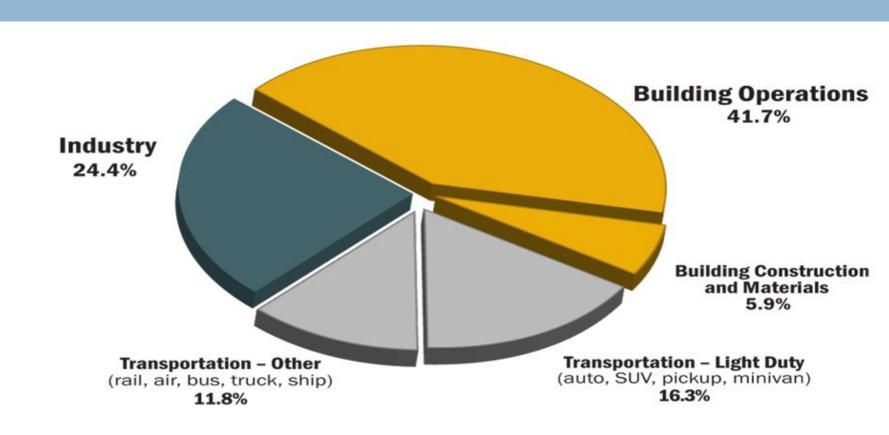
passive house

Solutions to Mitigate Climate Change from Buildings

Implementing the Passive House Building Standard to minimize the energy intensity and CO_2 emissions in buildings

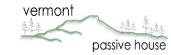

House Committee on Energy & Technology H.688

WWW.Vtph.org January 29, 2020

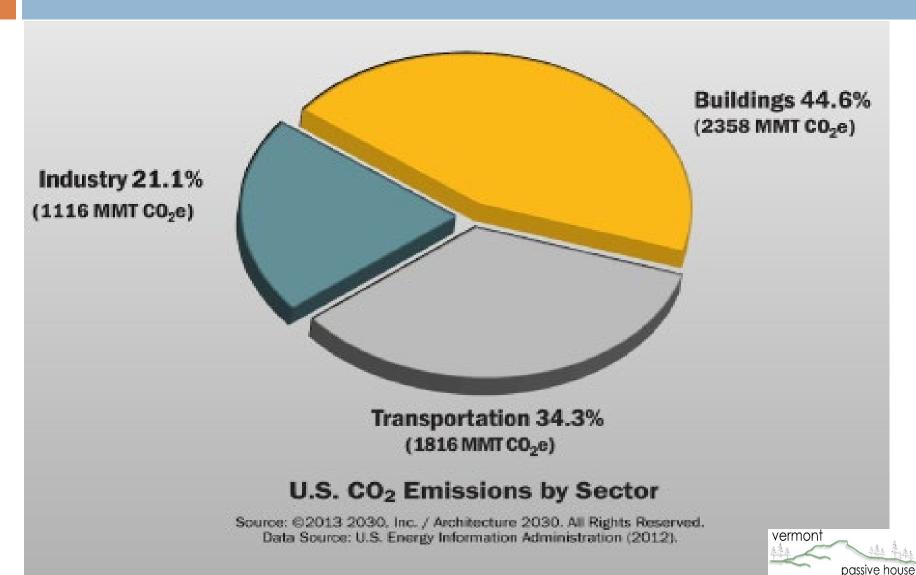

Presenter's Credentials

Enrique Bueno

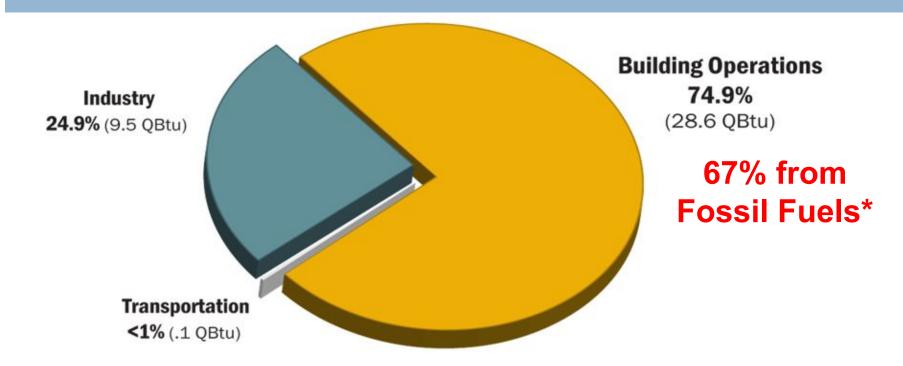
- Chemical Engineer
- VT Resident since 1992
- 40 Years experience in basic industries Cement, Aluminum and Steel production
- 9 Years specialized in Building Science and Passive House Buildings
- Founding member of the VT Passive House NPO 5013C
- Board Chair of the VT Passive House organization
- Certified Passive House Consultant



The Problem

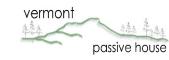

U.S. Energy Consumption by Sector

Source: ©2013 2030, Inc. / Architecture 2030. All Rights Reserved. Data Source: U.S. Energy Information Administration (2012).



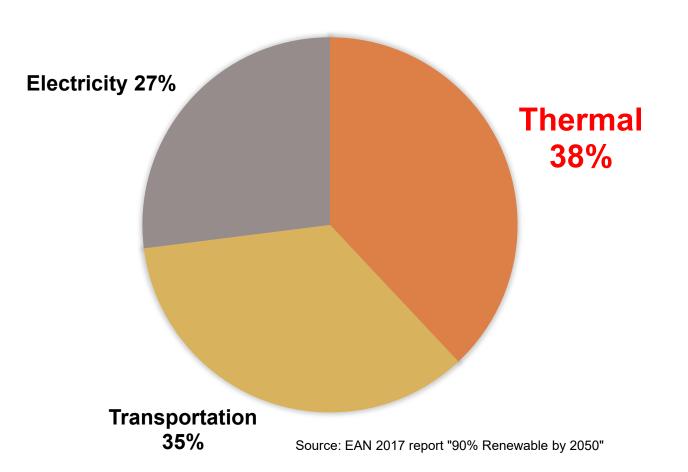
The Problem

Building Operations and Materials have a mayor impact on CO₂ emissions



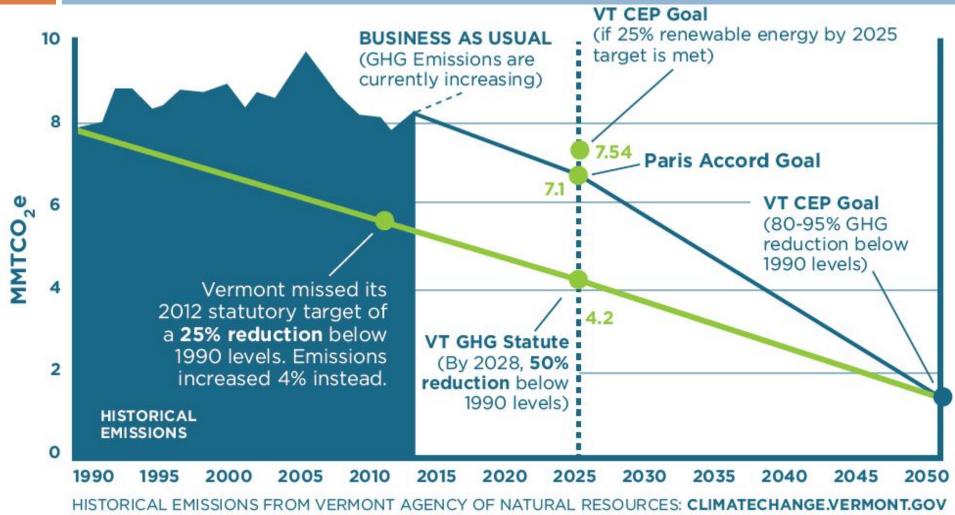
The Problem Building Operations use 75% of Total Electricity

U.S. Electricity Consumption by Sector


Source: ©2013 2030, Inc. / Architecture 2030. All Rights Reserved. Data Source: U.S. Energy Information Administration (2012).

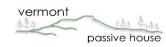
*US-EIA 2014

The Problem in VT 76% of Thermal comes from Fossil Fuels


VT ENERGY USE BY SECTOR

The Problem in VT

VT's CO2 emissions increased by 11% from 2012 to 2015 by 2015 we were 55% above the goal



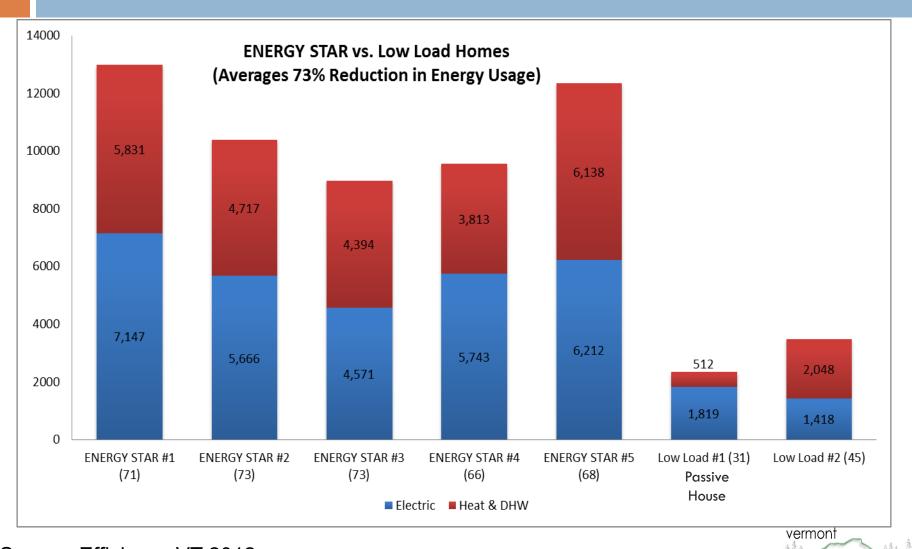
What are we proposing to contribute to the Solution? Adoption of the Passive House Standard as RBES

Why?

- The Passive House Standard is based on specific energy intensity performance benchmarks which if met, you pass, if not you fail
- It allows for accountability since the benchmarks are well defined
- It requires field 3rd party verification to comply with design parameters

DOE Recognition of the Passive House Standard

ZERH Staircase



Energy Efficiency & Renewable Energy

				Solar Ready	Solar Ready
				Eff. Comps.& H ₂ O	Eff. Comps.& H ₂ O
ZERO ENERGY READY HOME US DEPARTMENT OF ENERGY		EPA Indoor Air Package	EPA Indoor Air Package		
				Optimized Duct Location	Optimized Duct Location
		HVAC QI with WHV	HVAC QI with WHV	HVAC QI with WHV	HVAC QI plus HRV
		Water Management	Water Management	Water Management	Water Management
Independent HERS Verif.	Independent HERS Verif.	Independent HERS Verif.	Independent HERS Verif.	Independent HERS Verif.	Independent PHIUS Verif.
IECC 2009 Enclosure	IECC 2012 Enclosure	IECC 2009 Enclosure	IECC 2012 Enclosure	IECC 2012/15 Encl./ES Win.	Ultra-Efficient Enclosure
HERS 85-90	HERS 70-80	HERS 65-75	HERS 55-65	HERS 48-55	HERS 35-45
IECC 2009	IECC 2012	ENERGY STAR v3	ENERGY STAR v3.1	ZERH	PHIUS+

passive house

Actual Energy Consumption Comparison of five Energy Star Homes, one Passive House and one Low Load

passive house

Source: Efficiency VT 2012

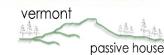
RBES Stretch Code is stuck !

ZERH Staircase

ENERGY

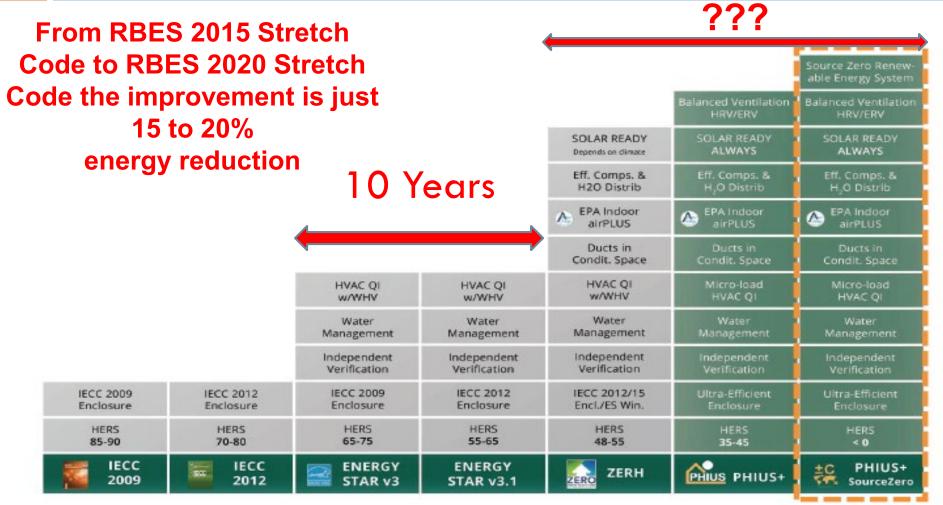
Energy Efficiency & Renewable Energy

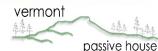
		here		Solar Ready	Solar Ready
ZERO ENERGY READY HOME 70 % Sho where it c		rt from		Eff. Comps.& H ₂ O	Eff. Comps.& H ₂ O
				EPA Indoor Air Package	EPA Indoor Air Package
	and shou			Optimized Duct Location	Optimized Duct Location
		HVAC QI with WHV	HVAC QI with WHV	HVAC QI with WHV	HVAC QI plus HRV
		Water Management	Water Management	Water Management	Water Management
Independent HERS Verif.	Independent HERS Verif.	Independent HERS Verif.	Independent HERS Verif.	Independent HERS Verif.	Independent PHIUS Verif.
IECC 2009 Enclosure	IECC 2012 Enclosure	IECC 2009 Enclosure	IECC 2012 Enclosure	IECC 2012/15 Encl./ES Win.	Ultra-Efficient Enclosure
HERS 85-90	HERS 70-80	HERS 65-75	HERS 55-65	HERS 48-55	HERS 35-45
IECC 2009	IECC 2012	ENERGY STAR v3	ENERGY STAR v3.1	ZERH	PHIUS+


vermont

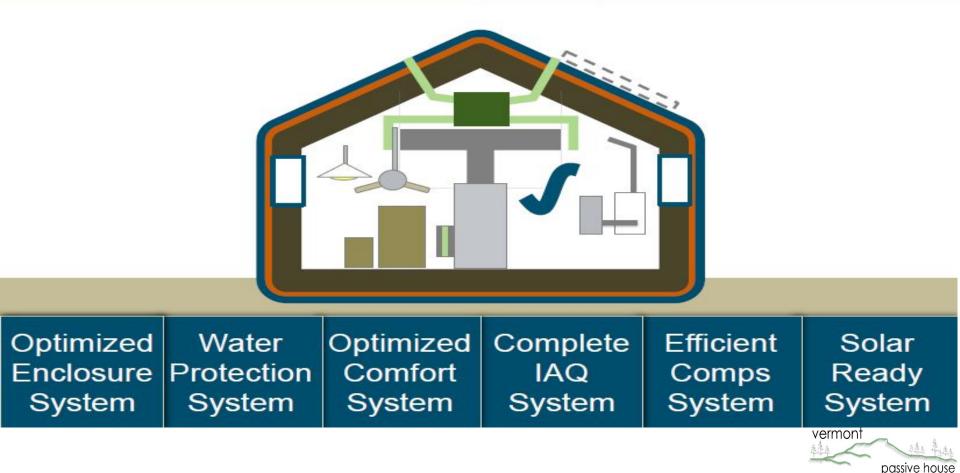
passive house

RBES should be here!


Ē


	assive	House				Source Zero Renew able Energy System
	Source	7ero			Balanced Ventilation HRV/ERV	Balanced Ventilatio HRV/ERV
JUDICE ZEIU			SOLAR READY Depends on dimate ALWAYS		SOLAR READY ALWAYS	
				Eff. Comps. & H2O Distrib	Eff. Comps. & H ₂ O Distrib	Eff. Comps. & H ₂ O Distrib
				A EPA Indoor airPLUS	EPA Indoor airPLUS	AirPLUS
				Ducts in Condit. Space	Ducts in Condit. Space	Ducts in Condit. Space
		HVAC QI w/WHV	HVAC QI w/WHV	HVAC QI w/WHV	Micro-load HVAC QI	Micro-load HVAC Qi
		Water Management	Water Management	Water Management	Water Management	Water Management
		Independent Verification	Independent Verification	Independent Verification	Independent Verification	Independent Verification
IECC 2009 Enclosure	IECC 2012 Enclosure	IECC 2009 Enclosure	IECC 2012 Enclosure	IECC 2012/15 Encl./ES Win.	Ultra-Efficient Enclosure	Ultra-Efficient Enclosure
HERS 85-90	HERS 70-80	HERS 65-75	HERS 55-65	HERS 48-55	HERS 35-45	HERS < 0
IECC 2009	IECC 2012	ENERGY STAR v3	ENERGY STAR v3.1	ZERH	PHIUS PHIUS+	C PHIUS+

How long is it taking ?



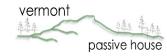
Where does a Zero Energy Ready Building Start According to the DOE ?

Zero Starts with the Enclosure

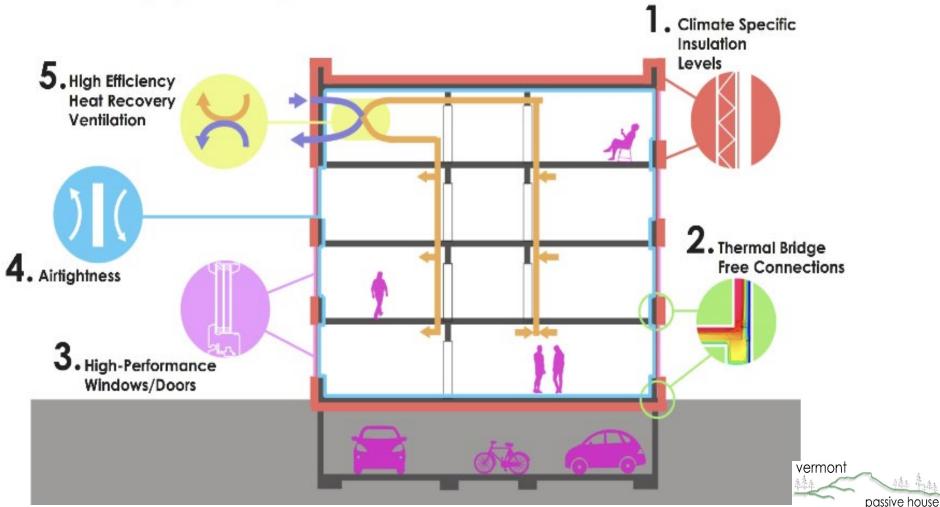
Energy Efficiency & Renewable Energy

DOE's Recognition of the Passive House Standard

Consumer Choice Made Simple



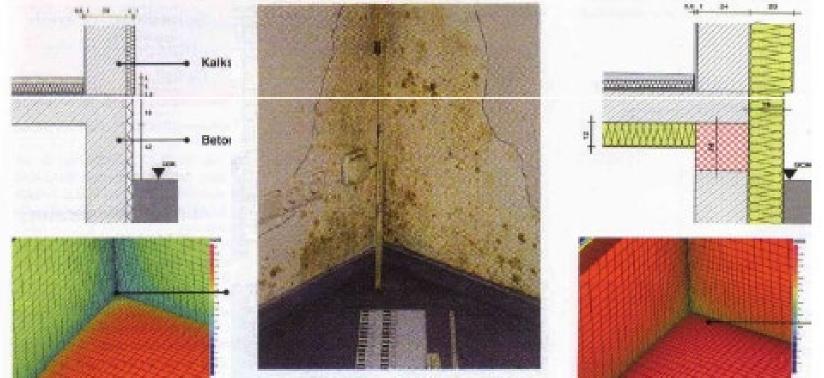
Energy Efficiency & Renewable Energy


Efficiency VT's Multifamily Incentives for the Passive House Standard

	Energy modeling for building	50% of modeling cost (up to \$5,000) if conducted early in support of integrated design process; must include EVT Energy Consultant in process.
ncentives	Thermal Shell commissioning	50% of commissioning cost (up to \$5,000) if air leakage target is 0.10 cfm50/sq. ft. exterior building shell area or less
	Passive House	Additional \$300 per unit incentive for successful Passive House certification.

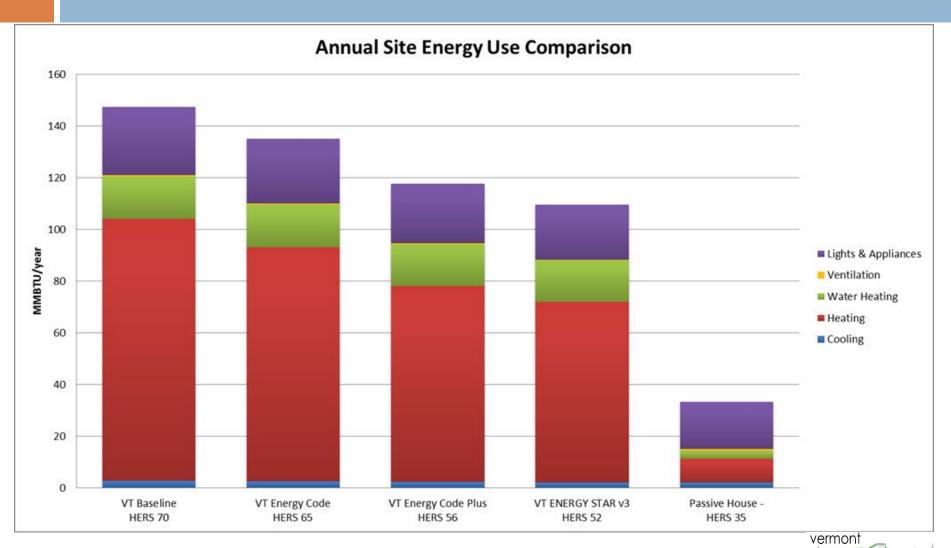
PASSIVE BUILDING PRINCIPLES

Five key principles:



立意生

MINIMIZE LOSS: ELIMINATING THE THERMAL BRIDGE MINIMIZES HEAT LOSS CONDENSATION/BUILDING DETERIORATION


BAD = high heat loss + risk of condensation

GOOD = low heat loss, warm interior surface + no condensation

Minimum temperature 48 F below dew-point, risk of condensation Minimum temperature 58 Fabove dew-point, no risk of condensation

Energy Usage Comparison

Source: Efficiency VT - 2012


passive house

How does it relate to other programs?

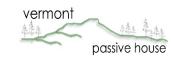
Energy Efficient Housing Concepts in the US:

Vermont Energy Code (RBES): required for all new construction but not enforced				
Energy Star 3.0: DoE Program (30% more efficient than Code)				
Building America: I EStar)	DoE super energy savings Program (15% better than			
Passive House:	 90% more efficient than VT RBES Code 70% more efficient than Energy Star 55% more efficient than Building America 			

Can be cost equivalent to conventional building for single family and equal or less for multifamily and commercial construction.

Passive House Projects Vermont

ELM PLACE

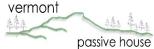

a conventional building

@ only 2% more cost

ELM PLACE -Best Overall Passive Building Winner

Multifamily project category Winner Affordable project category Honorable Mention

2017 PHIUS Passive House Projects Competition 2017 PHIUS Passive House Projects Competition


Elm Place Senior Housing, Milton-VT Passive House vs. Stretch Code 2020

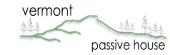
Space	Heating demand	5.38	kBTU/(ft2yr)
heating	Heating load	4.91	BTU/(hr.ft2)
Primary energy	dehumidification, DHW, lighting, electrical appliances	59	kBTU/(ft2yr)
Airtightness		0.7	ACH50

Passive House 68% better than Stretch Code

Space	Heating demand	17.06	kBTU/(ft2yr)
heating	Heating load	11.90	BTU/(hr.ft2)
Primary energy	dehumidification, DHW, lighting, electrical appliances	75	kBTU/(ft2yr)
Airtightness		3	ACH50

Stretch Code 217% More Heating Demand 27% More Primary Energy

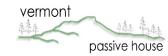
Passive House Projects North East USA


East Harlem - NYC East 111th Street development

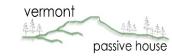
Mixed-use, 655 affordable apartments complex including - Seniors' housing

- Harlem RBI/Dream Charter School
- YMCA facility
- Mount Sinai Health Center
- Urban Market & Retail Space
- Public gardens

Income from \$19,050 to \$106,080



Village Center Apartments Brewer, ME


48 Affordable Housing Units 51,778 SqFt Interior **Floor Area** 1,2 & 3 Bedroom units 3 common areas 1 dog washing room \$135/sqft construction cost

Village Center Apartments Brewer, ME

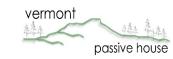
Conventional **Double Stud-**Wall filled with cellulose that any builder can build **Not Rocket** Science


Twin Pines Housing –West Lebanon NH Maclay Architects – Waitsfield VT

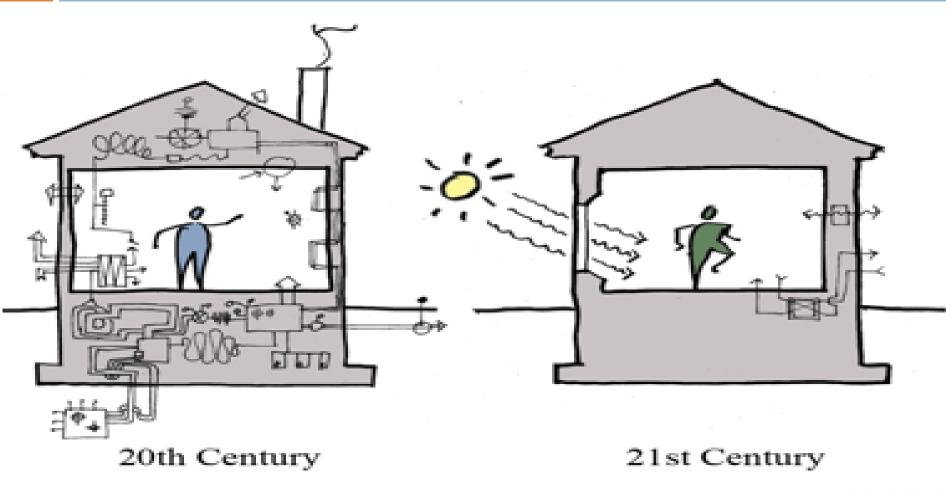
AREA: 27,000 sf Net Positive Energy ILFI Net Zero Energy PHIUS+ 2015

ENERGY INTENSITY: 25 kBTU/sf-yr (modeled) Air Infiltration: 0.044 cfm50/sf (actual) Solar PV array size: 180 kW

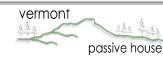
COMPLETION: 2019

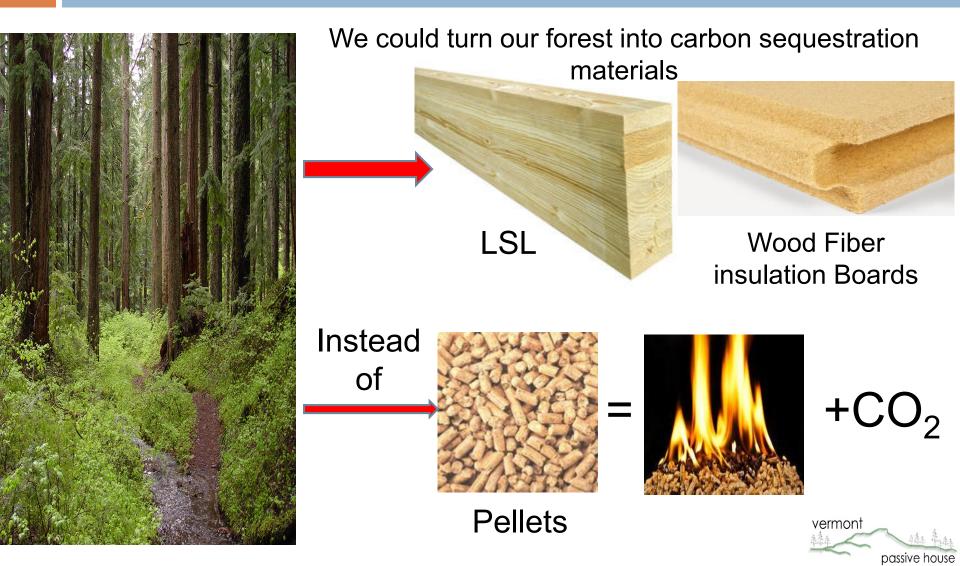


Habitat for Humanities East Montpelier, VT

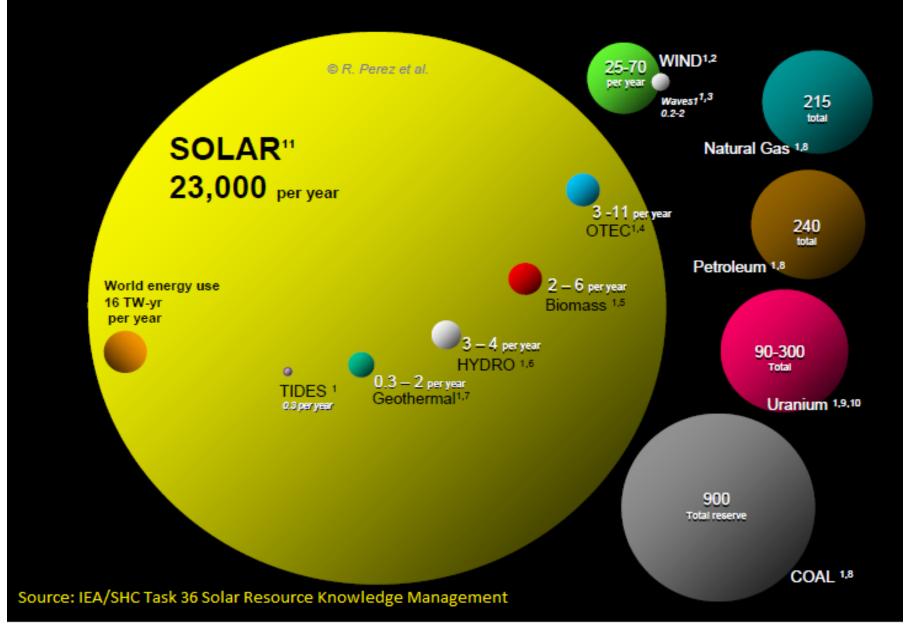


Built by Volunteers Construction: Timber Insulation: Cellulose **Gross Area** : 1,318 ft² HERS Score: 9 Certification: PHIUS+ 2015 The first year without PV their energy cost was \$63/month total


Air Tightness: 0.011 cfm50/ft2 Heat/Cool: ASHP Ventilation: Central HRV Windows: Triple glazed avg U-0.11 (R9)


Passive House Moves Toward Simplicity

AR&T Architects


Economic Opportunities for VT Bio Mass and Bio Fuels are not the Answer

There are lots of plant-based carbon-storing building materials

passive house

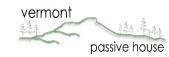

Ē

Figure 1: Comparing finite and renewable planetary energy reserves (Terawattyears). Total recoverable reserves are shown for the finite resources. Yearly potential is shown for the renewables.

What We Have and What We Lack

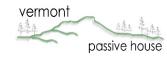
- We have the science
- We have the craftmanship
- We have of shelf materials and components
- We lack legislation !

VT Legislature's URGENT MISSION

VT Legislature must act now to reduce the energy waste and CO2 emissions related to buildings by:

- 1) Enacting legislation to require builders and contractors' registration
- 2) Requiring builders and contractors' certification
- 3) Designate an authority for work verification
- 4) Designate an authority to enforce the newly adopted building code
- 5) Boldly and immediately upgrading the VT building code RBES to Passive House levels of energy and carbon reductions

VT Legislature's URGENT MISSION


VT Legislature must act now to reduce the energy waste and CO2 emissions related to buildings by:

- 1) Enacting legislation to require builders and contractors' registration
- 2) Requiring builders and contractors' certification
- 3) Designate an authority for work verification
- 4) Designate an authority to enforce the newly adopted building code

Covered by H.719

 Boldly and immediately upgrading the VT building code RBES to Passive House levels of energy and carbon reductions

Thank you

vermont

passive house

Because we care about you saving money and living healthy, and care about the environment, our legacy and our future, we design and build energy efficient buildings.

Enrique Bueno - ebueno@eplusbuildings.com

