

Lake Champlain Basin as a Complex Adaptive System

Professor, Community Development & Applied Economics Department

Director, Master of Public Administration Program

Fellow, Gund Institute

Social Science Leader, Vermont EPSCoR

University of Vermont

INS

FOR ECOLOGICA

Our "Wicked Problem:"

Algae blooms and phosphorus loading...

A wicked problem is a social or cultural problem that is difficult or impossible to solve for as many as four reasons: <u>incomplete</u> <u>knowledge</u>, the number of <u>people and</u> <u>opinions involved</u>, and the <u>interconnected</u> <u>nature</u> of these problems with other problems.

Our "Wicked Problem:"

Algae blooms and phosphorus loading...

Complexity Across **Time** and **Spatial** Scales

THIS APPLIES TO ALL FRESHWATER WATER BODIES

Source: Zia et al., In preparation. Understanding Lags, Inertia and Cross Scale Dynamics in Social Ecological Systems

Figure 8. Output from cascading current Track-1 IAM that will be replaced by the BREE IAM: Output reveals (a) Projected precipitation by GCM BNU_ESM.1.rcp85 in 2040; (b) Projected Land-Use by Agent Based Model in 2040; (c) Projected hydrological scenario by RHESSys on August 15, 2040; (d) Projected Chlorophyll A (proxy for algae) concentration by A2EM on August 15, 2040.

Temperature and Precipitation Projections to 2090

Zia, A.,et al., 2016. Coupled impacts of Climate and Land Use Change Across a River-Lake Continuum: Insights from an Integrated Assessment Model of Lake Champlain's Missisiquoi Basin, 2000-2040. Environmental Research Letters. 11(11).

Zia et al., 2016

Temperature

Figure 7: Projected changes in mean monthly lake temperature (°C) from the first (2001-2010) to the last (2031-2040) decade of the simulation period. Δ Temperature is shown by month for each LULCC scenario (rows), RCP (columns), and GCM (symbols).

MISSISIQUOI BAY WILL LIKELY BE GETTING WARMER

ipsl mri noresm 0 4 5 6 7 8 9 10 11 4 5 6 7 8 9 10 11 4 5 6 7 8 9 10 11 IED rcp45 IED rcp60 IED rcp85 0 9 10 11 7 8 9 10 11 4 5 6 7 8 4 5 6 4 5 6 7 8 9 10 11 LPFP rcp45 LPFP rcp60 LPFP rcp85 Ó 9 10 11 10 11 4 5 6 7 8 4 5 6 7 8 9 4 5 6 7 8 9 10 11 LWFP rcp45 LWFP rcp60 LWFP rcp85 0 0 2 4 5 6 7 8 9 10 11 10 11 4 5 6 7 8 9 10 11 4 5 6 7 8 9 Month Figure 8: Projected changes in ChlA density (µg L⁻¹) during the growing season between first (2001-2010) and last (2031-2040) decades of simulation at long term monitoring station 51. (rows), and the shown by month for each LULCC scenario (rows), RCP (columns), and GCM (symbols).

MISSISIQUOI BAY WILL LIKELY HAVE LONGER/MORE PERSISTENT ALGAE BLOOMS

Chlorophyll-a µg L⁻¹

IDEV rcp60

IDEV rcp85

IDEV rcp45

Change from First to Last Decade

Some policy-relevant findings from RACC:

Climate Change Climate Change d g Climate Change b Terrestrial Ecosystems a Aquatic Policy Decisions & Tools

- Land use clearly impacts stream metabolism
- Storm events impact total phosphorus (TP) levels.
- Water column stability impacts BGA blooms (effects of winds and storm mixing).
- Legacy phosphorus is a driver of shallow bay BGA blooms.
- Fish health is likely impacted by BGA blooms.

Climate drivers: precipitation is becoming more extreme in Vermont

Co-Benefits of Flood Hazard & Clean Water Mitigation

Bomblies, et al., 2016

Water quality appears to be important to the public

We Have the Right Mechanism in Place to Allocate Resources: **Tactical Basin Planning**

Land User Consent: Human Behavior is Complex

Competitive/utility Cooperative Group 1 Group 2 maximizing 20 20 ° , • 0000 0 00 0,0 0 (Tsai et al., 2015) diff4 diff4 23 2 4 얹 0 Age -20 0 20 -40 -20 0 20 -40 -0.14* Attitude -0.28** diff3 diff3 Group 3 Group 4 College -0.19* Perceived -0.20* 0.11 20 20 Social Norm 0.003 Intention -0.04 Farm Size 0 0 to Adopt 0.16 Category diff4 diff4 0.01 Perceived 0.67* 20 2 **Behavioral** Control 4 Net Loss 0.36* Hyper-20 20 -20 0 -40 -20 0 -40 Previous Adoption Competitive/ diff3 diff3 Hyper-Conservation utility Easement Cooperative maximizing **Buffers**

Maio et al. WRR 2016

To Accommodate a Range of Human Responses: Market, Incentive and Regulatory Solutions are Needed

- To shift mass balance of nutrients going on and off of the landscape
- To encourage treatment of nutrients as a commodity
- To incentivize adoption of best management practices (BMPs, SOPs, etc.)
- To use **regulation** and **permitting** when level playing fields are needed and active resistance prevails

Reaching Our Point of Critical Mass...

"An ounce of prevention is worth a pound of cure." Benjamin Franklin