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Our “Wicked Problem:”
Algae blooms and phosphorus loading...

.~

D A wicked problem is a social or cultural
problem that is difficult or impossible to solve
for as many as four reasons: incomplete
knowledge, the number of people and
opinions involved, and the interconnected
nature of these problems with other

problems.
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Figure 8. Output from cascading current Track-1 IAM that will be replaced by the BREE IAM: Output reveals (a) Projected
precipitation by GCM BNU_ESM.1.rcp85 in 2040; (b) Projected Land-Use by Agent Based Model in 2040; (c) Projected

hydrological scenario by RHESSys on August 15, 2040; (d) Projected Chlorophyll A (proxy for algae) concentration by A2EM
on August 15, 2040.




Temperature and Precipitation Projections to 2090

Average Temperature 10-year averages
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Zia, A.etal.., 2016. Coupled Impacts of Climate and Land Use Change Across a
River-Lake Continuum: Insights from an Integrated Assessment Model of Lake
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Zia et al., 2016
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Figure 7: Projected changes in mean monthly lake temperature (*C) from the first
(2001-2010) to the last (2031-2040) decade of the simulation period. ATemperature is
shown by month for each LULCC scenario (rows), RCP (columns), and GCM
(symbols).

MISSISIQUOI BAY WILL LIKELY BE GETTING
WARMER
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Figure 8: Projected changes in ChlA density (ug L) during the growing season
between first (2001-2010) and last (2031-2040) decades of simulation at long term
monitoring station 51. AChlA is shown by month for each LULCC scenario (rows),
RCP (columns), and GCM (symbols).

MISSISIQUOI BAY WILL LIKELY HAVE
LONGER/MORE PERSISTENT ALGAE BLOOMS



Some policy-relevant findings from RACC:

* Land use clearly impacts stream metabolism
e Storm events impact total phosphorus (TP) levels.

* Water column stability impacts BGA blooms (effects of winds and storm
mixing).

* Legacy phosphorus is a driver of shallow bay BGA blooms.
* Fish health is likely impacted by BGA blooms.
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Water quality appears to be important to the public
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We Have the Right Mechanism in Place to Allocate
Resources: Tactical Basin Planning
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Experimental gaming: Examining the effects of
taxation and incentives on farmer decision
making processes

Farm # 1

Land User Consent:
Human Behavior is Complex “3 SEGS Lab

social ecological gaming and simulation

l Farm #6
Harnessing complexity to solve problems.
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To Accommodate a Range of Human Responses:
Market, Incentive and Regulatory Solutions are Needed

* To shift mass balance of nutrients
going on and off of the landscape

* To encourage treatment of nutrients
as a commodity

* To incentivize adoption of best

&
management practices (BMPs, SOPs,
* To use regulation and permitting .~
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Adopter Innovativeness and Innovation Adoption Level
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"An ounce of prevention

Is worth a pound of cure."
Benjamin Franklin



