Testimony on Vermont H.105

Rachel W. Obbard, MSc, PhD Assistant Research Professor Thayer School of Engineering Dartmouth College

April 6, 2017

THAYER SCHOOL OF ENGINEERING AT DARTMOUTH

Our **PLASTISPHERE**

- About 330 million tons of plastic were produced in 2016, of which about 37% was disposable packaging.
- <u>Plastics accumulate in the environment</u> and are found in

air	seawater
soil	deep-sea sediments
fresh water	sea ice

- Plastics make up 60-80% of marine litter.
- Polyethylene (PE), polypropylene (PP), and polystyrene (PS) are the major components of microplastic debris in the ocean.
- Single use carryout bags are most commonly PE.
- PE can take more than 100 years to break down.

Plastics bags in the environment

Degradation ???

- Abiotic <u>oxidation by exposure to ultraviolet radiation</u> is the initial and rate-determining step for PE degradation in the environment.
- Biodegradable plastic bags contain additives intended to hasten their chemical degradation in the presence of UV light.
- Biofilms form on the surface of bags in the environment within weeks, and <u>biofilms block as much as 90% of the</u> <u>transmitted UV light</u>, drastically slowing degradation.

Plastic bags persist in the environment

Degradation Fragmentation

- Large plastic items fragment over time into smaller pieces, which are more readily transported.
- Microplastics are defined as plastic debris <5 millimeters in size.
- <u>Microplastic particles come from the breakdown of larger</u> <u>plastic items</u>, as well as from abrasives, exfoliants, cosmetics, and pre-production plastic pellets.

A toxicological hazard

- Chemicals used in manufacturing, or present in the environment, are sorbed by microplastics and released to organisms
 - phthalates
 - polychlorinated biphenyls (PCBs)
 - polycyclic aromatic hydrocarbons (PAH)
 - organochloride pesticides

- PE sorbs an order of magnitude more phenanthrene (a PAH) than either polypropylene or PVC
- PCBs are sorbed in far greater concentrations by PE and PP than by PET and PVC.

	Article
oubs.	acs.org/est

Long-Term Field Measurement of Sorption of Organic Contaminants to Five Types of Plastic Pellets: Implications for Plastic Marine Debris

Chelsea M. Rochman, $^{^{\dagger}\!,*}$ Eunha Hoh, ‡ Brian T. Hentschel, † and Shawn Kaye ‡

Marine animals ingest plastic

- Plastic debris presents a hazard to a variety of animals.
- More than 260 species including fish, seabirds, turtles, and marine mammals have been documented to become entangled in plastics or ingest them.
- Ingestion can result in ulceration or starvation.
- In one study, PE and PP accounted for 97% of the total plastic present in fur seal scat.
- Turtles mistake plastic bags for jellyfish.
- Microplastics have been found in many commercial species of fish, mollusks, and crustaceans
- Effects on human health are being examined

Transport and release of chemicals from plastics to the environment and to wildlife

Emma L. Teuten^{1,2}, Jovita M. Saquing³, Detlef R. U. Knappe³, Morton A. Barlaz³, Susanne Jonsson⁴, Annika Björn⁴, Steven J. Rowland⁵, Richard C. Thompson¹, Tamara S. Galloway⁶, Rei Yamashita⁷, Daisuke Ochi⁷,

Leachate from microplastics impairs larval development in brown mussels

Pablo Pena Gandara e Silva ^a, Caio Rodrigues Nobre ^b, Pryscila Resaffe ^c, Camilo Dias Seabra Pereira ^{b, c}, Felipe Gusmão ^{a, c, *}

pubs.acs.org/est

Impacts of Discarded Plastic Bags on Marine Assemblages and Ecosystem Functioning

Dannielle Senga Green, $*,^{\dagger,\ddagger}$ Bas Boots,[§] David James Blockley,^{||} Carlos Rocha,[†] and Richard Thompson^{\perp}

Microplastics also found in freshwater ecosystems

Less is know about the effects of plastics on freshwater systems, but research in this area is increasing.

Review

Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs

Dafne Eerkes-Medrano^{a,*}, Richard C. Thompson^b, David C. Aldridge^a

Our problem, our solution !

- Goods are already very well packaged, do we really need a further disposable item of packaging to take them home in?
- The single use plastic carrier bag is a symbol of our throwaway society, and an unnecessary and avoidable use of plastics.
- We need to retrain ourselves so that if we go out shopping it becomes as automatic to take out a reusable bag with us as it would be to take a rain coat or an umbrella if it were raining.