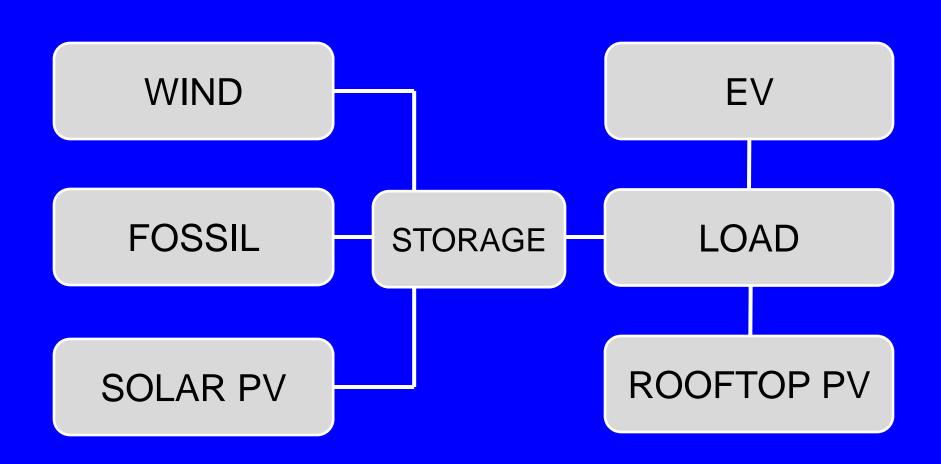
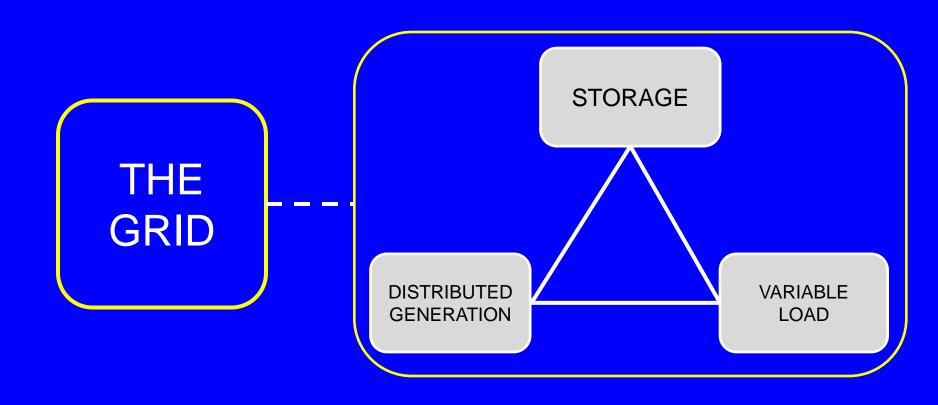
Grid Scale Energy Storage

IMRE GYUK, DIRECTOR, ENERGY STORAGE RESEARCH, DOE-OE


Energy Storage provides Energy

when it is needed


just as Transmission provides Energy

where it is needed

The grid has become stochastic!

An Autonomous Micro-Grid

ENERGY

Pumped	Hydro
---------------	-------

Compressed Air Energy Storage (CAES)

Aquifer CAES

Advanced Isothermal

Batteries

NaS

Flow batteries

ZnBr

Vanadium Redox

Lead Acid

Lead carbon

Aqueous hybrid ion

Lithium Ion

Flywheels – Energy

Power

Electrochemical Capacitors

PG&E lowa

AEP, PG&E

Primus

UET, Vionx

EastPenn

Aquion

SouCalEd, AES

Amber Beacon Helix

POWER

Storage Economics:

The Cost of a Storage System depends on the Storage Device, the Power Electronics, and the Balance of Plant

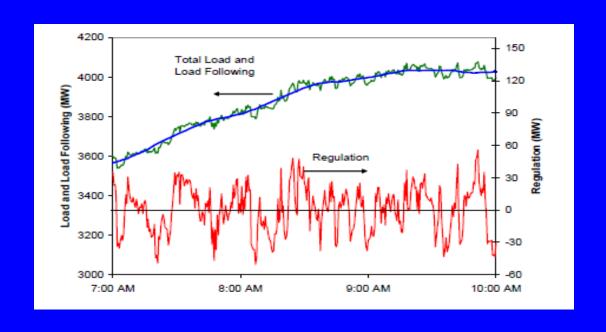
Power Electronics 20-25%

Energy Storage Device 25-50%

Facility 20-25%

The Value of a Storage System depends on Multiple Benefit Streams, both monetized and unmonetized

Arbitrage


Frequ. Reg.

Dem. Charges month, year

Resiliency

LCOE depends on Application!

Power Systems for Frequency Regulation or Renewable Smoothing

ARRA Project – Beacon Hazleton, PA. 20MW Frequency Regulation for PJM. Commissioned Aug. 2014

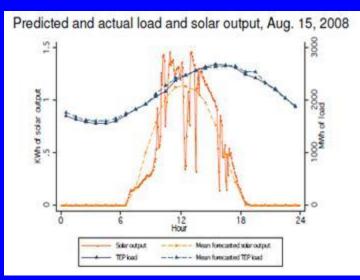
\$K 5,936/year potential revenue R. Byrne, SAND 2016-1080C

► This project provided the basis for FERC to establish "PAY FOR PERFORMANCE"!

ARRA – Duke Energy / Younicos

With 153MW Wind at No-Trees, TX 36MW / 40 min battery plant Smoothing, Frequency Regulation Commissioned March 2013

Frequency Regulation using Energy Storage is now a Commercially viable Business in FERC compliant Regions!


1999 - 2011, PJM utilities spent 48.8 cents per MW of load on frequency regulation

2012 - 2016, PJM utilities spent 24.4 cents per MW of load on frequency regulation

(SE Energy News 2016/11/28)

ARRA – Public Service NM: 500kW, 2.5MWh for smoothing and load shifting of 500kW PV installation; using EastPenn Lead-Carbon Technology

Load & PV Output in Tucson, AZ

Commissioned Sep. 2011 Integrator: Ecoult

King Island Hybrid System Hydro Tasmania – Ecoult/EastPenn

Peak Load: 2.5MW

Wind: 2.5 MW

Diesel: 6 MW

Lead Carbon Battery:

3MW-1.6MWh

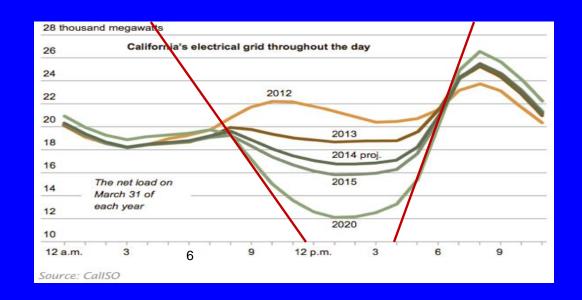
Demand Management

>65% Renewable Energy: A Green Island!

ARRA - Southern California Edison / LG Chem - Li-Ion:

8 MW / 4 hr battery plant for wind integration at Tehachapi, CA.

Tehachapi: 4,500MW Wind by 2015!


Commissioned: Sept. 2014

Integrator: ABB

8MW / 32MWh Storage Plant

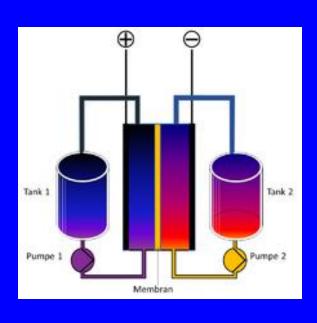
Energy Storage Systems for Peakshaving, Loadshifting, Ramping

October 2013: California PUC sets target of 1.3GW of Storage by 2020

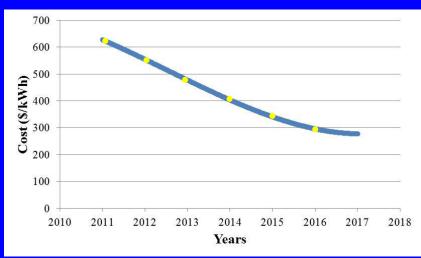
Research: Materials, Devices, Systems

Sandia, Pacific NW, Oak Ridge National Laboratories

Universities, Industry


8 R&D 100 Awards!

Flow Batteries decouple Power from Energy:


- Power is produced by a rechargable Electrochemical Cell
- Energy is stored in Tanks of electrolyte

This is analogous to a car:

- Power comes from the Engine
- Energy is in the gasoline Tank

Mixed Acid V/V Redox Flow Batteries, PNNL

18

3 Commercial Licenses

Award for Tech Transfer

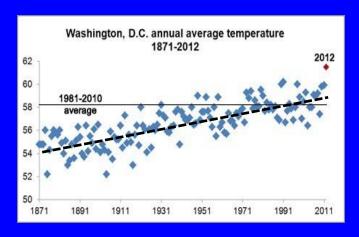
- Temperature stability + 80%
- Energy density + 70%
- Projected system cost of \$300/kWh for 4 hour system

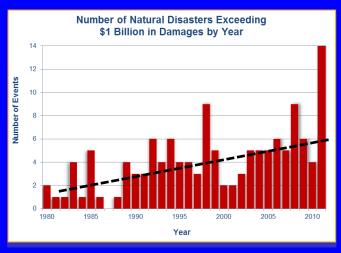
Some 22MW/88MWh in play

UniEnergy 600 kW/2.2MWh battery system

UniEnergy – UET, Mukilteo, WA

60 Employees, Capitalization: \$46.5M, 22 MW / 88 MWh in play


Energy Storage Systems for Grid Resiliency and Emergency Preparedness


DOE / State Initiatives

Energy Storage for Resilience

Every \$1 on protection measurements Can prevent \$4 in repairs after a storm!

Trends indicate the situation will get worse not better!!

Vermont Public Service Dept. – DOE - Green Mountain Power

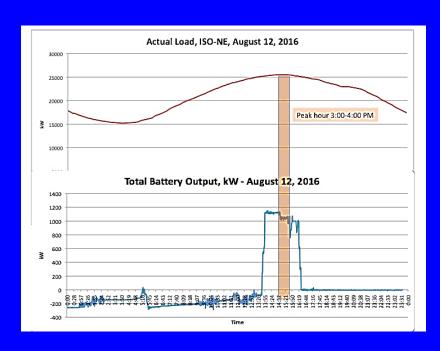
Joint Solicitation issued by VPS/OE Rutland, VT

4MW / 3.4MWh of storage Integrated with 2MW PV Integrator: Dynapower

Groundbreaking: Aug. 12, 2014 Ribboncutting: Sep. 15, 2015

Storage: Ancillary grid services, demand charge reduction PV: Green power for the grid. Situated on Brown Field area

System can be islanded to provide emergency power for a resilient microgrid serving a highschool / emergency center.


Project referenced as model in VT Energy Strategic Plan!

How to make the Microgrid Pay for itself:

Regional Network Service (RNS): Payments for using transmission lines depend on monthly peak load.

Forward capacity market (FCM): Payments for regional capacity reserves to cover load excursions depend on the yearly peak day/hour identified by ISO-NE,

In addition, there are financial benefits from frequency regulation and arbitrage.

Capturing the yearly peak, \$200,000 from PV and storage!

Washington State Clean Energy Fund:

Solicitation for \$15M for Utility Energy Storage Projects

Selected projects with UET vanadium flow battery:

- Avista (1MW / 4MWh) -- PNNL -- WA State U
- Snohomish (2MW / 8MWh) PNNL -- 1Energy -- U of WA

Under a DOE / WA MOU, PNNL will participate in both projects, providing use case assessment and performance analysis.

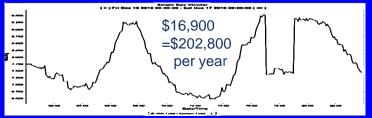
Vanadium technology with 1.7x Energy density developed at PNNL for DOE

Ribbon Cutting Avista, April 2015

2nd Solicitation: Teaming with Avista

Sterling, MA: Microgrid/Storage Project

Sterling Municipal Light Department, \$1.5M Grant from MA Community Clean Energy Resiliency Initiative. DOE/Sandia. NEC 2MW/2hr storage In conjunction with existing 3.4 MW PV to provide resiliency for Police HQ and Dispatch Center



Sterling, MA, October 2016

Description (1MW/1hr)	\$
Arbitrage (buy low,sell high)	13,321
Reduced Monthly Peak	98,707
Reduced Yearly Peak	115,572
Frequency Regulation	60,476
Total	288,076

Sterling, MA, December 2016

R. Byrne Sandia

For a capital cost of ~\$1.7M/MW, the simple payback is 6.67 years

Energy Storage Procurement, Guidance Document for Municipalities

Other Storage Projects:

Eugene, OR, Water & Energy Board

Resiliency Microgrid 500kW Storage + 125kW PV + Diesel gen sets at 3 aggregated sites

Cordova, AK, Study with ACEP Hydropower Smoothing

Kona, HI, with NELHA and HELCO

Enabling more solar PV
100kW/500kWh of V/V Batteries

Energy Storage Procurement

Guidance Documents for Municipalities

Prepared by

Sandia National Laboratories

With assistance fro

Clean Energy States Alliance

Funded I

U.S. Department of Energy – Office of Electricity
Delivery and Energy Reliability

With further assistance from

Clean Energy Group

Funded by

The Barr Foundation

July 2016

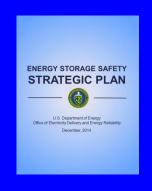
SAND2016-6120 O

The Bigger Picture

Grid Energy Storage Safety Initiative

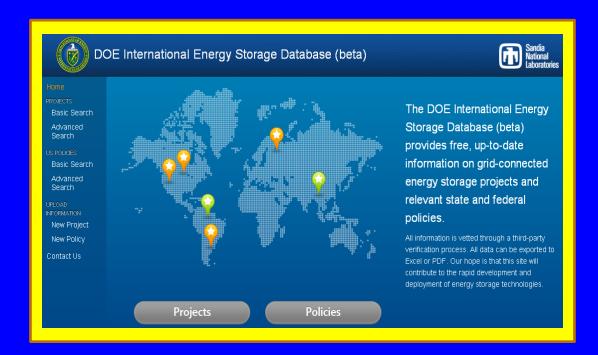
DOE identified *Validated Safety* as a critical need for the success of grid energy storage.

The ability to validate the safety of energy storage systems will:


- Decrease human and financial risk,
- Minimize installation costs,
- Accelerate acceptance of new technologies.

To address this need DOE is engaging key energy storage stakeholders:

- DOE OE Energy Storage Safety Workshop, February 2014
- PNNL Publication: Inventory of Codes and Standards
- Strategic Energy Storage Safety Plan December 2014
- Established 3 ES Safety Working Groups March 201
- DOE OE Energy Storage Safety Workshop, February 2016

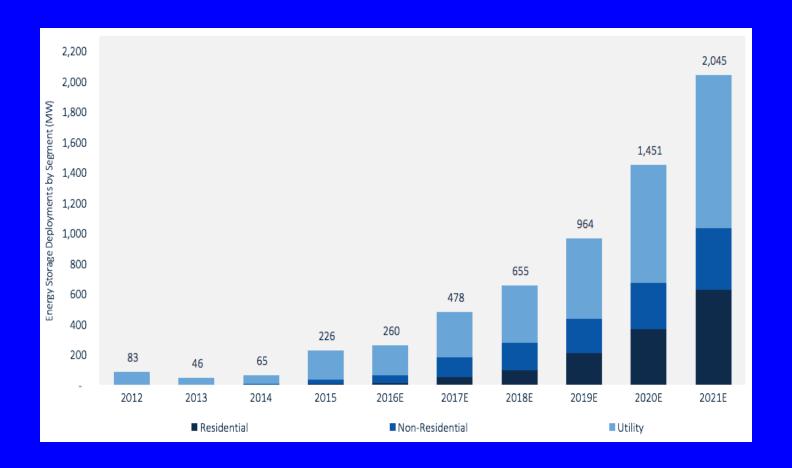


Regular Webinars by Storage Experts arranged by DOE and the Clean Energy States Alliance

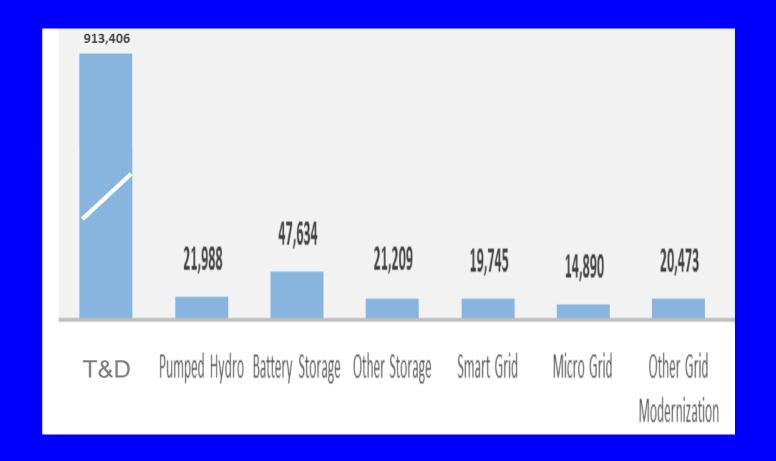
Energy Storage Technology Advancement Partnership (ESTAP)

cesa.org/projects/energy-storage-technology-advancement-partnership/

Measuring System Performance; Market Update; Procurement Guidance; State of the Industry; Flow Batteries; Safety Strategic Plan; Upgrading Distribution Resilience; Economics of Energy Storage; Oregon-DOE Storage Solicitation; Making an existing PV System into a resilient Microgrid; Connecticut and Massachusetts Storage Solicitations; Microgrid Technologies; Commissioning Energy Storage; East Penn and Ecoult Battery Installations; Smart Grid, Grid Integration, and Renewable Energy DOE International Energy Storage Data Base energystorageexchange.org supported by Strategen Over 1550 energy storage projects from 60+ countries. 50 energy storage technologies are represented



Partnerships with
Australian
Energy Storage
Alliance


Policy Database in Development

Partnership with EIA on Storage Reporting

Annual U.S. Energy Storage Deployments, 2012-2021

U.S. Energy and Employment Report, January 2017

Employment by Transmission, Distribution, and Storage Technologies Q1 2016

With new Technologies Cost will go down, Safety and Reliability will increase

With every successful Project the Value Propositions will continue to increase!

More jobs will be created!!