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Abstract

The potential greenhouse gas benefits of displacing fossil energy with biofuels are driving policy development

in the absence of complete information. The potential carbon neutrality of forest biomass is a source of consider-
able scientific debate because of the complexity of dynamic forest ecosystems, varied feedstock types, and multi-

ple energy production pathways. The lack of scientific consensus leaves decision makers struggling with

contradicting technical advice. Analyzing previously published studies, our goal was to identify and prioritize

those attributes of bioenergy greenhouse gas (GHG) emissions analysis that are most influential on length of car-

bon payback period. We investigated outcomes of 59 previously published forest biomass greenhouse gas emis-

sions research studies published between 1991 and 2014. We identified attributes for each study and classified

study cases by attributes. Using classification and regression tree analysis, we identified those attributes that are

strong predictors of carbon payback period (e.g. the time required by the forest to recover through sequestration
the carbon dioxide from biomass combusted for energy). The inclusion of wildfire dynamics proved to be the

most influential in determining carbon payback period length compared to other factors such as feedstock type,

baseline choice, and the incorporation of leakage calculations. Additionally, we demonstrate that evaluation cri-

teria consistency is required to facilitate equitable comparison between projects. For carbon payback period cal-

culations to provide operational insights to decision makers, future research should focus on creating common

accounting principles for the most influential factors including temporal scale, natural disturbances, system

boundaries, GHG emission metrics, and baselines.
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Introduction

The greenhouse gas (GHG) benefits of displacing fossil

energy with biofuels are driving policy development in

the absence of complete information. Getting the

accounting correct is particularly important given the

recent heavy emphasis on use of biomass energy to

meet national and regional emissions reduction goals.

For example, by 2020, between 8% and 11% of the UK’s

primary energy supply should be from biomass (United

Kingdom, 2012; see Beurskens & Hekkenberg, 2011 for

renewable energy projections of other EU states). The

initial assumption regarding biomass energy was that of

‘carbon neutrality’, whereby a biologically based energy

feedstock does not contribute to a net increase in

atmospheric CO2 relative to a defined fossil-fuel energy

baseline (Searchinger et al., 2009). The carbon neutrality

of forest biomass is a source of considerable debate

because of the complexity of dynamic forest ecosystems,

varied feedstock types, and multiple energy production

pathways. The evaluation of forest biomass carbon neu-

trality requires a defined set of criteria that capture ini-

tial forest conditions, in situ carbon dynamics (e.g.

fluxes), energy conversion efficiency, and a well-defined

fossil energy source for comparison, among others

(Walker et al., 2013; Mika & Keeton, 2014). Much of the

research to date has focused on the appropriate choice

of baseline (Gunn et al., 2012; Lamers & Junginger, 2013;

Walker et al., 2013) or leakage (Gan & McCarl, 2007).

Defining a baseline for carbon stocks in a forest eco-

system has been the focus of considerable research and

policy debate, because it is the carbon benchmark

against which the effect of biomass energy development

is evaluated and therefore influences the carbon neutral-

ity of a project (Zanchi et al., 2012). A ‘reference point’
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baseline uses the carbon stock on a given land area at a

given point in time as the benchmark (EPA, 2014,

Fig. 1). A ‘dynamic’ (or ‘anticipated future’) baseline

requires defining a business-as-usual (BAU) condition

that is projected without any new use of biogenic feed-

stocks for energy. Carbon stock changes under bioener-

gy scenarios are then compared to a fossil-fuel energy

scenario to quantify the overall emissions effect from

fuel switching (Fig. 2). In this case, the choice of base-

line directly influences the determination of carbon neu-

trality.

Leakage, defined as activity shifting in the presence

of a biomass project (Henders & Ostwald, 2012), has the

potential to drive forest harvest outside the project area

to continue meeting a priori economic demand for bio-

mass (e.g. wood products). Although the leakage con-

cept has been well defined, it is challenging to quantify

because of the varying size and global nature of markets

for different forest products (Gan & McCarl, 2007; Chen,

2009; Fankhauser & Hepburn, 2010).

There are many other attributes that can influence the

length of the carbon payback period or point at which

the biomass energy produced becomes carbon neutral

from an atmospheric perspective (Lamers & Junginger,

2013; Vanhala et al., 2013). These attributes are often

project specific and can include biomass feedstock

source or type, forest type, fossil-fuel source replaced,

and life cycle analysis boundaries, among others

(Lamers & Junginger, 2013; Walker et al., 2013). Given

the range of attributes influencing biomass projects, the

carbon benefits of any given project can be influenced

by site-specific aspects and decisions made by research-

ers in establishing the parameters for comparison.

Previous efforts to synthesize the literature on this

topic have generally focused on part of the system

(Mann, 2011; Muench & Guenther, 2013), had a small

sample size ((Holtsmark, 2013; Sedjo, 2013), or the meth-

ods chosen relied on a descriptive analytical framework

restricting the authors’ deductions to very general con-

clusions (Helin et al., 2013; Lamers & Junginger, 2013;

(a) (b)

(c) (d)

Fig. 1 With a dynamic or anticipated future baseline, future emissions are compared to a modeled baseline that assumes a given

trend in forest carbon pools in the absence of the bioenergy activity (a, b). A reference point baseline is defined by the forest carbon

stock in a given area at a given point in time. With a reference point baseline, future emissions are compared to this static point in

time (c, d). The carbon balance of a particular bioenergy can change as a function of baseline type.

© 2015 John Wiley & Sons Ltd, GCB Bioenergy, 8, 281–289
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Miner et al., 2014), which all limit the ability to identify

system-wide influential factors. Our objective was to

identify the attributes of bioenergy GHG emissions

analysis that exert the strongest influence over the

length of the carbon payback period using an exhaus-

tive review of the literature on this topic paired with a

quantitative analytical approach.

Materials and methods

We conducted a literature review using Scopus, searching for

the keywords carbon accounting, forest biomass, greenhouse gas

emissions, and bioenergy in studies published between 1991 and

2014. We identified 59 peer-reviewed studies that investigated

the carbon neutrality of forest-based bioenergy systems on a

temporal scale, as well as seven influential studies in the gray

literature (see supporting information). When a particular

study included multiple scenarios such as a range of forest eco-

systems, benchmark fossil energy sources (e.g. coal, mix, natu-

ral gas, oil), or energy conversion efficiency (e.g. electricity,

liquid transportation fuel, combined heat and power, heat), we

divided the study into separate cases. If the overall results of a

single, multi-case study were not directly attributable to spe-

cific cases, we associated each case with the overall result. The

59 studies utilized in this analysis included a total of 149 cases.

We identified twenty attributes to classify the publications

(Table 1). The baseline assumption referred to authors’ choice

of assuming carbon neutrality or applying a dynamic or refer-

ence point baseline for the forest ecosystem carbon stocks (see

Fig. 1). Author clusters described a set of authors that pub-

lished frequently together or were located at the same institu-

tion and using a common set of assumptions or models.

Wildfire refers to the inclusion or exclusion of wildfire dynam-

ics in the study’s methodology. The stochastic nature of wild-

fire dynamics (e.g. frequency, size, etc.) can alter source-sink

dynamics, adding additional uncertainty to ecosystem model

results. The GHG impact of biomass removal from forests to

reduce wildfire severity or risk is currently not settled in the

scientific community and might rely largely on model assump-

tions, site conditions, and analytical system boundaries (Camp-

Fig. 2 Baseline choices influence carbon payback when com-

paring bioenergy alternatives with fossil-fuel emissions. In this

hypothetical case, the reference point baseline assumes a sce-

nario where forest carbon stocks briefly decrease followed by a

recovery compared to a reference point in time. The dynamic

baseline assumes a project scenario where forest stocks

decrease compared to business as usual and require a longer

time span to recover.

Table 1 Attributes included in the classification and regression tree analysis used to identify the most influential factors for carbon

payback period

Attribute Definition

Author clusters Authors are from same institution or publish together

Publication year

Carbon payback period Study result in upper and lower bounds of carbon payback period in years

Geographic Region Africa, Australia, Canada, Europe, South America, US, Global

Climatic zone Tropical dry, temperate, cold; based on K€oppen classification

Geographic Scale County, forest, state, national, regional, global

Spatial unit Stand, forest, landscape

Temporal scale Total years considered in analysis

Data source Hypothetical, regional, field data

Baseline assumption Reference point, dynamic or neutrality assumed for forest ecosystem carbon stock (see Fig. 1)

Forest type Natural forest, plantation, or both

Biomass source Additional harvests or current logging residue only

Wildfire Inclusion of wildfire dynamics

LCA pools Number of LCA carbon pools included

LCA boundaries Comparable system boundaries for fossil-fuel and bioenergy systems or imbalanced

(e.g. more detailed bioenergy analysis)

Energy types compared Electricity, transportation fuel, heating fuel, combined heat and power

Fossil fuel replaced Coal, energy mix, natural gas, oil product

Wood products Inclusion of wood product LCA (upstream emissions associated with processing and disposal)

Product substitution Substitution of wood products for alternative fossil-fuel emission intensive products

Leakage Accounted for leakage with project implementation

© 2015 John Wiley & Sons Ltd, GCB Bioenergy, 8, 281–289
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bell et al., 2011; Hurteau et al., 2012). While some authors argue

that the carbon stock reduction associated with biomass

removal is compensated for by reduced fire severity and risk

(Hurteau et al., 2008, 2014a), other studies suggest the opposite

(Mitchell et al., 2012). Despite a considerable wildfire risk in

large areas of the world’s forests, the inclusion of wildfire

dynamics when calculating carbon payback period is not com-

monplace in fire-prone regions (e.g. Jonker et al., 2014). We also

screened each case to determine which forest and nonforest

carbon pools were considered within each analysis (attribute

‘LCA pools’). Seven carbon pools were restricted to the forest

ecosystem (Above ground live biomass, Aboveground standing

dead biomass, Belowground live biomass, Belowground dead

biomass, Forest floor, Merchantable timber, Harvest residue),

four carbon pools described the processing of material (Forest

treatment operations, Recovery of biomass in the forest, Trans-

port, Mill residue), while two carbon pools described product

fate (Wood products in use, Wood products in landfill), and

two described indirect effects (Leakage, Product substitution).

The studies evaluated were characterized by a very inconsis-

tent inclusion of carbon pools, ranging from the inclusion of

1–16 carbon pools, with an average of nine pools. Leakage was

considered in only eight cases, and product substitution was

only considered in 21 cases of the 149 total cases.

We analyzed the cases using classification and regression

tree analysis. Classification and regression tree (CART) analysis

is a nonparametric test where algorithms for constructing deci-

sion trees usually work top-down, by choosing a numeric or

categorical variable at each step that best splits the set of items

(De’Ath & Fabricius, 2000), making it a useful tool for meta-

analyses (Dusseldorp et al., 2013). The goal is to create a model

that predicts the value of a target variable based on several

input variables. Variables used for the first splits are consid-

ered the most predictive ones, explaining the highest amount

of variance in the dependent variable. Using the JMP PRO 10.0.0

software (SAS, Cary, NC, USA), we validated the model with a

randomized binary variable to assess the optimum number of

splits based on R2 values. As not all of the 59 studies analyzed

used carbon payback period as a carbon emissions metric, only

those 38 studies that incorporated a calculation of a carbon

payback period and covering 123 cases were included in the

CART analysis.

Results

The CART model validation resulted in a minimum

number of eight splits (R2 = 0.87). We validated the sta-

bility of the CART model by including and excluding

studies represented by disproportionally high cases or

long payback periods. We concluded that the outliers

did not change the number of splits required nor the

attribute ranking based on their predictive power. The

hierarchical ranking of these attributes based on their

effect on carbon payback period for forest biomass pro-

jects indicated that the single largest determinant of car-

bon payback period length was the inclusion of wildfire

dynamics (Fig. 3). Studies that included wildfire

dynamics had a mean carbon payback period of

856 years (SD = 1299), while those that did not had a

mean carbon payback period of 51 years (SD = 75). This

initial level of classification had a significant influence

on the importance of subsequent factors, such that there

was no overlap between influential attributes following

this highest level classification (Fig. 3). Studies having

the shortest carbon payback period (l = 5 years,

SD = 15) did not account for wildfire dynamics or leak-

age, were from an author group other than authors who

were at some point associated with the Joanneum

Research Forschungsgesellschaft mbH (Graz, Austria),

included a fossil energy source other than natural gas,

and did not use a dynamic baseline. Studies having the

longest carbon payback period (l = 2945 years,

SD = 1082) were a subgroup of studies that included

wildfire dynamics but also considered a wood products

LCA, utilized electricity generation as the dominant

technology, and were conducted in natural forests

(Fig. 3). The total range of payback periods covered a

span from 0 to 4500 years, with the largest ranges

occurring in studies that included wildfire dynamics or

wood products LCA (Fig. 4). The three attributes com-

monly identified as important for evaluating the carbon

neutrality of biomass projects (baseline, leakage, and

product substitution) were less influential overall. In

studies where wildfire dynamics were considered, leak-

age and baseline were not influential in the first four

levels of classification (Fig. 3). In studies where wildfire

dynamics were not considered, leakage was the second

level and baseline the fifth level of classification (Fig. 3).

In these cases, including leakage increased the carbon

payback period such that the interquartile range

exceeded that of cases that did not include leakage

(Fig. 4b) and the type of baseline had little influence

over the carbon payback period.

Discussion

CART analysis

Project baseline and leakage are two attributes consis-

tently used in the quantification of forest carbon projects

and in quantifying the atmospheric greenhouse gas

effects of a forest bioenergy project (Guest et al., 2013).

While these attributes are important for forest carbon

offset projects (Hurteau et al., 2012), our results suggest

they are less informative for evaluating the carbon bene-

fits of forest biomass projects. Interestingly, the choice

of baseline type (dynamic or reference point) was only

influential in 33% of cases, and only after studies had

been segregated based on four other attributes (Fig. 3).

The inclusion of wildfire dynamics was the attribute

with the greatest influence over carbon payback period

© 2015 John Wiley & Sons Ltd, GCB Bioenergy, 8, 281–289
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Fig. 3 Classification and regression tree (CART) analysis on the influence of different variables on carbon payback period in years

for forest bioenergy. CART ranks independent variables based on predictive power with the variable that explains the highest amount

of variance in the dependent variable on top. A total of eight splits resulted in a R2 of 0.87, additional splits did not produce meaning-

ful increases in R2.

(a) (b)

Fig. 4 Carbon payback periods based on variables with high predictive power as indicated by classification and regression tree

analysis (Fig. 3). Figure a and b exhibit carbon payback periods for variables including and excluding wildfire dynamics, respec-

tively.

© 2015 John Wiley & Sons Ltd, GCB Bioenergy, 8, 281–289
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length, suggesting that the role of natural disturbance

within a system exerts strong control (Fig. 3). Unlike

other natural disturbances (e.g. hurricanes, ice storms),

wildfire risk can be managed. In biomass projects where

fuel-reduction treatments are considered, the original

driver for the treatments needs to be clearly defined

because it directly influences the appropriate baseline

condition. For example, if biomass is only a by-product

of thinning that is already occurring, GHG emissions

and derived carbon payback periods for bioenergy sce-

narios differ compared to scenarios where the presence

of a biomass market triggers a decision to implement a

fuel-reduction thinning (Walker et al., 2013). The few

studies in fire-prone regions where open burning of

fuel-reduction treatment residues is common practice

conclude that using the material for bioenergy results in

immediate carbon benefits (Jones et al., 2010; Springs-

teen et al., 2011). Where a market facilitates the decision

to thin, the carbon payback period is influenced by a

suite of factors. The carbon costs associated with treat-

ments (e.g. thinning and prescribed burning) have the

potential to reduce mortality and emissions from subse-

quent wildfire when compared with the untreated forest

condition (Hurteau et al., 2008; North & Hurteau, 2011).

However, the potential benefits (in terms of short pay-

back periods) to be gained from reduced wildfire emis-

sions following treatment are dependent on the

probability of occurrence, size, and severity of wildfire

as well as the growth response of trees retained during

treatment (Campbell et al., 2011; Hurteau et al., 2014a).

Given the influence of projected changes in climate on

forest growth (Silva & Anand, 2013) and disturbance

frequency and effect (Westerling et al., 2011; Moritz

et al., 2012; Hurteau et al., 2014b), disturbance dynamics

are likely to become even more influential in evaluating

biomass energy projects over meaningful temporal

scales. Therefore, while simulating stochastic distur-

bance adds additional challenges to modeling efforts, in

disturbance-prone areas, it is an integral component of

both baseline and project scenario conditions.

Other influential attributes in determining carbon

payback period can be broadly classified into decision

criteria and regional market influences. Decision criteria

attributes, including leakage and wood products LCA,

require clearly defining the study boundary and present

an opportunity for standardization of evaluation crite-

ria. When the effects of wood harvest displacement to

meet market demands are absent, the influence of mar-

ket forces is left unaccounted and the actual effects of a

project on the global carbon cycle are neglected. Like-

wise, accounting for the use and disposal of wood prod-

ucts can strongly influence conclusions about the carbon

benefits of forest management (Lippke et al., 2011). Cre-

ating a framework in which there is consensus on the

specific boundaries for evaluation or inclusion of a

range of boundaries will facilitate comparison across

studies.

Attributes related to geographic location and local

markets (e.g. dominant technology, fossil-fuel source)

exert influence over the carbon payback period and

pose a challenge for equitable comparison of forest

biomass energy across large spatial scales. The domi-

nant technology and its influence on carbon payback

period are functions of conversion efficiency and are

highly sensitive to the fossil-fuel source (McKechnie

et al., 2010). In our evaluation of dominant technology,

electricity production vs. other technologies such as

combined heat and power or heat only was the defin-

ing factor. This result was not surprising given the

slightly low conversion efficiencies associated with

producing electricity only from woody biomass com-

bustion over fossil-fuel consuming systems (Schlama-

dinger & Marland, 1996). When other technologies are

employed, such as combined heat and power, the

overall conversion efficiency of woody biomass com-

bustion systems increases (Richter et al., 2009) and

approaches that of fossil-fuel consuming combined

heat and power systems; therefore, the carbon pay-

back period is reduced. While decisions regarding

dominant technology are in part influenced by loca-

tion, the replacement fuel comparison is entirely a

function of geographic location. Power sources and

the emissions per unit of power generated vary by

region (Chen, 2009). If the regional power mix is com-

prised primarily of natural gas, woody biomass

energy will have a considerably longer carbon pay-

back period (l = 82 years, SD = 83, n = 21). However,

if the regional energy mix is primarily from coal com-

bustion, the carbon payback period is reduced

(l = 36 years, SD = 48, n = 21).

Author group was an influential attribute for classi-

fying carbon payback period. The partitioning based on

author groups is most likely attributable to the

repeated application of modeling frameworks and soft-

ware used within a confined circle of researchers. Mod-

els are a representation on how authors understand the

system to be analyzed. Providing a host of results

using various models is a common characteristic of

complex systems where scientific consensus has not

been reached. An example is the inclusion of 41 differ-

ent climate models in the fifth assessment report of the

Intergovernmental Panel for Climate Change (Flato

et al., 2013). This result validates how models are con-

sistent within their applications but also how they can

create ‘half-predictable’ outcomes based on their

assumptions. This finding further reinforces the need to

establish a common set of criteria for evaluation. In

particular, specifying model components such as sto-

© 2015 John Wiley & Sons Ltd, GCB Bioenergy, 8, 281–289
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chastic disturbances in general and wildfire in particu-

lar is a case in point.

Additional insights

Calculating a carbon payback period as a metric to

describe the GHG impact of alternative scenarios is

becoming standard practice outnumbering other met-

rics frequently employed such as tons of carbon dis-

placed per energy unit of biomass fuel (e.g. (Hall

et al., 1991; Schmidt et al., 2011), carbon emissions for

various scenarios over a given timescale (e.g. (Domke

et al., 2008), or a carbon neutrality factor that measures

GHG emissions in percent of a baseline scenario over

a given period of time (e.g. Schlamadinger et al., 1995;

US Forest Service, 2009; Zhang et al., 2010; Kilpel€ainen

et al., 2012; Winford & Gaither, 2012). Carbon payback

period was the principal metric in 26 of the 59 studies

while nine studies used GHG savings in % over a fos-

sil-fuel scenario over a given time. Other metrics such

as CO2 savings per ha (e.g. Dwivedi et al., 2014) or

CO2 savings per MWh (e.g. Kilpel€aInen et al., 2011)

were infrequent. A conversation on the advantages

and disadvantages of one metric over the others is

largely absent.

For the majority of studies, we observed a high trust

in models that was exhibited by the willingness of

authors to report in 100+ year timespans as well as a

frequent absence of uncertainty metrics when reporting

results. We also observed no consistent pattern in the

use of temporal scales for modeling. The temporal scale

of analysis for all studies analyzed ranged from 20 (e.g.

(Hudiburg et al., 2011) to 10 000 years (Mitchell et al.,

2012) with a median of 240 years. The lowest temporal

scale was applied by (Hudiburg et al., 2011) to avoid the

risk of ‘overstretching data’, that is owing to data uncer-

tainty. No neutrality was achieved over these 20 years

in this study. All other authors seemed to have enough

confidence in their assumptions, datasets and models to

investigate carbon fluxes over longer time scales

although only a few cases included episodic carbon

pulses that occur on large temporal and spatial scales

such as wildfire (included in 8% or 14% of all studies),

insect outbreaks or storm events. Most studies used

hypothetical data (35% or 59% of all studies), only seven

studies (12%) used field data. Among those studies that

modeled neutrality over time on temporal scales sur-

passing 100 years, the share of studies using hypotheti-

cal data was even higher (67% or 30 of 45 studies).

Uncertainties affecting other system elements such as

baselines (Buchholz et al., 2014a), product substitution

(York, 2012; Bird, 2013), soil carbon (Buchholz et al.,

2014b), or market effects (Sedjo, 2013) were frequently

underreported or excluded.

Setting assessment boundaries provide a major chal-

lenge when comparing bioenergy GHG emission studies

and can result in incomplete accounting. For instance,

we confirmed the observation of (Muench & Guenther,

2013) that most studies did not account for all upstream

fossil-fuel emissions such as building machinery and

facilities. Notably, a broader set of metrics to assess

GHG implications using bioenergy systems was largely

absent. The inclusion of non-CO2 GHG relevant emis-

sions (other reactive gases, biogenic aerosols, and fac-

tors such as methane or atmospheric particles), surface

albedo only considered by (Guest et al. (2013), evapo-

transpiration or discounting approaches to account for

the release of GHG emissions along a temporal scale

(e.g. Cherubini et al., 2011; Pingoud et al., 2012) was not

common practice. Nevertheless, our CART analysis sug-

gests that a focus on top-priority system attributes such

as wildfire dynamics, leakage, or wood products LCA

can substitute for a more complete assessment that

includes a maximum set of (ultimately less influential)

attributes. This insight is supported by an observation

of Holtsmark (2012), finding that complex global warm-

ing potential decay functions ‘did not change the results

fundamentally’ compared to a model that used a simple

accumulation model of CO2 in the atmosphere.

While the CART analysis suggests some influence of

plantation vs. natural forest management practices on

carbon payback periods, this was only true for a small

subset of cases. The full sample revealed no apparent

differences in carbon payback periods between the two

management types (Fig. 5). Reducing rotation lengths to

increase profitability can be a major advantage of plan-

tation over natural forest regimes (Cubbage et al., 2010).

Our results do not show that a switch from natural for-

est management regimes to plantation forestry provides

Fig. 5 Range of minimum and maximum carbon payback

periods for natural and plantation forests.

© 2015 John Wiley & Sons Ltd, GCB Bioenergy, 8, 281–289
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a strong argument to reduce carbon payback period.

Similarly, (Py€or€al€a et al., 2012) also concluded for boreal

forests that shorter rotations do not always automati-

cally produce more favorable emission balances on

behalf of bioenergy. This result challenges the general-

ization by (Lamers & Junginger, 2013) that shorter rota-

tions result in shorter carbon payback periods.

Recommendations

In summary, for carbon payback period calculations to

provide operational insights to decision makers, future

research should focus on creating consistent accounting

principles including the consideration of stochastic dis-

turbance, temporal scales, quantifying and reporting

uncertainties, standardization of carbon pools evalu-

ated, GHG emission metrics considered and baseline

definition.
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