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 Writing in these pages in 2003, Myles Allen considered the limits of climate science and 11 

posed an essential question: “Will it ever be possible to sue anyone for damaging the climate?” 12 

Twenty years later, we argue that the scientific case for climate liability is closed. Here we detail the 13 

scientific and legal implications of an “end-to-end” attribution that links corporate emitters to 14 

specific damages from warming. Using emissions data from major fossil fuel firms, peer-reviewed 15 

attribution methods, and advances in empirical climate economics, we illustrate the trillions in 16 

economic losses attributable to the extreme heat caused by emissions from individual firms. 17 

Chevron, the highest-emitting investor-owned firm in our data, for example, caused between $479 18 

billion and $1.8 trillion in heat-related losses over 1991-2020, disproportionately harming the 19 

tropical regions least culpable for warming. More broadly, we outline transparent, reproducible, 20 

and flexible frameworks that formalize how end-to-end attribution could inform litigation by 21 

assessing whose emissions are responsible and for which harms. While quantitative linkages 22 

between individual emitters and particularized harm were not feasible 20 years ago when Allen 23 

first considered the legal implications of attribution science, they are now. Science is no longer an 24 

obstacle to the justiciability of climate liability claims. 25 

 26 

 Once climate attribution emerged as a field of inquiry, scholars both scientific1 and legal2 raised 27 

questions about whether climate liability claims could be pursued via common law3. Extreme weather 28 

events—floods, droughts, extreme heat, and more—upend lives, undermine livelihoods, and damage 29 

property. To the extent that such extremes could be tied to climate change, the logic goes, injured parties 30 

could seek monetary or injunctive relief through courts1. Over the last twenty years, science and law have 31 

been engaging a set of challenges that take climate liability from Allen’s 2003 thought experiment into a 32 

realistic practice. 33 

 Scientifically, the focus has been on advances in attribution, specifically the development of 34 

standardized methods codifying a scientific consensus on the role climate change plays in amplifying 35 
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extreme events4. Such consensus methods have been applied to a variety of events5–7 from heat waves8,9 to 36 

droughts10,11, floods12, hurricanes13,14, and wildfires15. This science has advanced such that events are now 37 

attributed in near-real-time16,17 or in advance using forecast models18. The scientific consensus developed 38 

around these methods19 suggests they could meet legal standards for admissibility20. By revealing the 39 

human fingerprint on events previously thought to be “acts of God,” attribution science has helped make 40 

climate change legally legible21–23. 41 

 Legally, much of the focus has been on assessing whether climate attribution is compatible with 42 

existing causation and standing frameworks. Over 100 climate-related lawsuits have been filed annually 43 

since 2017, with many more anticipated. The legal theories undergirding these cases generally fall into 44 

one of three categories, shaping who is liable and for what conduct24. The first centers on the 45 

disinformation campaigns mounted by fossil fuel firms, which claimants argue misled investors to the 46 

point of fraud25. The second targets governments and their regulatory failures to protect citizens’ rights to 47 

a stable climate24.  48 

 In this Perspective, we focus on the last of these theories: that emitters are liable for the damage 49 

wrought by warming26. Such cases mirror efforts to hold other industries like tobacco27 and 50 

pharmaceuticals28 liable under legal standards like the duty of care, public nuisance, failure to warn, or 51 

strict liability. While these cases—like disinformation-focused cases—use evidence that fossil fuel firms 52 

have long been aware of climate change, they specifically attempt to tie these firms to the human costs of 53 

their emissions. For example, in 2017, the city of Oakland, California sued British Petroleum (BP) and 54 

other firms for causing sea level rise along the California coast29. New York City and Rhode Island have 55 

brought similar claims30,31. Firms like ExxonMobil are a frequent target, with plaintiffs ranging from 56 

residents of flooded Alaskan villages to Puerto Rican municipalities damaged by Hurricanes Irma and 57 

Maria32,33. Attribution science is most useful to this theory of liability, as legal standing for plaintiffs 58 

requires that they show causal linkages between emitters and particularized injuries.  59 

 The fate of climate liability cases remains uncertain: success, failures, and appeals abound. In 60 

2015, the nonprofit Urgenda won a key ruling that the Dutch government breached its constitutional duty 61 

of care by not reducing emissions34; more recently, a court ruled that Montana’s efforts to deregulate 62 

emissions violated its residents’ right to a healthy environment35. In contrast, New York’s case against 63 

five fossil fuel companies was dismissed in 2018 on the grounds that judges should not make climate 64 

policy. As cases laboriously wind their way through courts around the world, litigation shows no signs of 65 

slowing24. And as extreme events intensify and losses accumulate—and as political action on climate 66 

change lags the urgency of the crisis—more people are turning to the legal system for relief24. There is 67 

talk of a “coming tsunami of climate litigation” for which courts are woefully unprepared36. 68 
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 Here we illustrate how climate attribution that goes from emissions to impact at the corporate 69 

scale is now possible, addressing a major hurdle to climate liability. Using peer-reviewed methods, we 70 

estimate the economic losses suffered due to the extreme heat caused by emissions from major fossil fuel 71 

firms (“carbon majors”) over 1991 to 2020. We present two actionable frameworks for end-to-end 72 

attribution: one considering the accumulated harms from a hazard, like heat waves over 1991-2020, and 73 

another considering the harms from a specific event, such as the 2003 European heat wave. The 74 

cumulative and event-specific approaches can be applied to myriad scales of emitters and claimants, and 75 

extended to different classes of impacts, from heat waves as here, to floods, sea level rise, and more. We 76 

also show how each framework can be applied in a way that is agnostic about any particular emitter, 77 

instead attributing the emissions contribution required to confidently detect damage. Such a flexible 78 

approach helps communities assess responsibility for losses, rather than naming parties prima facie. We 79 

argue that while this type of end-to-end attribution will provide legal clarity in some respects, the ultimate 80 

question of whether climate liability is justiciable will be resolved in courts. More widely, we advocate 81 

for the creation of a transparent and objective science-based enterprise to provide peer-reviewed and 82 

reproducible attributions and expert testimony to ensure courts have the scientific support to buffer the 83 

billowing wave of climate liability. 84 

 85 

Attribution science and causation 86 

 The scientific and legal enterprises share many characteristics: they are consumed with 87 

establishing facts, proving causation, building theories, leveraging frameworks, and exercising prudence. 88 

But there are crucial differences: The burden of proof is generally higher in science than in law37, as 89 

science works to falsify hypotheses and jettison theories38, while many legal judgements, such as in U.S. 90 

civil law, seek only to prove that something is more likely than not. In the context of climate liability, 91 

advances on the scientific side (e.g., attribution) do not necessarily resolve questions on the legal side 92 

(e.g., causation, standing). They are different enterprises with different goals. Yet there is reason to 93 

believe that advances in attribution can help clarify legal paths to liability, in part by better articulating 94 

“but for” causation2.  95 

 To sue over an injury, a litigant typically must demonstrate “but for” causation: without the 96 

actions of the defendant, the plaintiff would not have been injured2. This task is often straightforward, like 97 

for car accidents, workplace negligence, and others. But in the context of climate liability, it is more 98 

difficult, as a plaintiff must provide both “general” and “specific” causation. General causation is 99 

concerned with whether something causes a type of harm, such as the way asbestos exposure increases 100 

cancer risk. It is held to a high standard of certainty, akin to the 95% statistical significance level adopted 101 

in many scientific studies39. Specific causation, on the other hand, considers whether a defendant’s actions 102 
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caused the particular injury to the litigant: whether a specific worker’s cancer was caused by asbestos in 103 

their workplace, for example. Specific causation is often held to a “more likely than not” standard. In his 104 

Perspective, Allen hypothesized how attribution science might meet these standards: If global warming 105 

has tripled the risk of a flood, then such warming is responsible for two-thirds of its risk, making 106 

contributors liable for two-thirds of its harm1. This argument provides elements of general, but not 107 

specific, causation—would the event have occurred “but for” an emitter’s particular contribution? The 108 

role of an individual contributor must be isolated22,40, and changes in physical events do not necessarily 109 

imply the particularized harms that provide standing.  110 

 Hurricane Maria, which motivated a suit by Puerto Rican municipalities32, provides an example. 111 

Peer-reviewed research has shown that global warming intensified rainfall from the hurricane13. While 112 

valuable, such analysis does not resolve “but for” causation41; it is not clear, for example, how much any 113 

one emitter contributed to such rainfall intensification. Moreover, it is unknown how the amount of 114 

rainfall translated into socioeconomic injury from the hurricane. Such gaps have been cited as a 115 

significant barrier to climate litigation2,21,42,43 and have been used by fossil fuel firms to argue that 116 

plaintiffs lack standing to sue over climate damages44. 117 

 Scientific advances that resolve this barrier must directly quantify the harm caused by a specific 118 

actor’s emissions. This is not a trivial task. The causal chain from emissions to impacts is nonlinear45 and 119 

uncertainties compound from emissions, to atmospheric GHG concentrations, to warming, and finally to 120 

socioeconomic impacts46. Moreover, emissions and impacts are dislocated in space and time—a flood 121 

could occur on the other side of the Earth from the source of emissions, months, years, or decades after 122 

such carbon was pulsed to the atmosphere47. As a result, scientific approaches that illustrate clear causal 123 

linkages from emitters to impacts have been termed the “Holy Grail” of climate litigation43. 124 

  125 

Advances enabling “end-to-end” attribution 126 

 Despite these challenges, two recent advances make end-to-end climate attribution possible. 127 

Firstly, physical science can more confidently connect individual emitters to local climate change. 128 

Secondly, social science can more confidently connect local climate change to socioeconomic outcomes.  129 

On the first, “source attribution” research40 has linked emissions from countries48–50 and carbon 130 

majors51 to increases in global mean surface temperature52 (GMST), sea level rise52, and ocean 131 

acidification53. Recent efforts have also linked countries’ emissions to extreme climate events54–57, though 132 

not the human impacts of those events. Source attribution typically uses an emissions-driven climate 133 

model to simulate historical and counterfactual climates, where the latter is the same as the historical save 134 

for the removal of one emitter’s time-varying emissions (i.e., a “leave-one-out” experiment). The 135 

difference between the two simulations represents the contribution of the left-out emitter, providing a test 136 
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of “but for” causation2: but for the emissions of said actor, the climate would have been thus. One could 137 

perform these simulations with a coupled Earth system model58, but such models are opaque and 138 

computationally expensive. A computationally tractable approach is to use reduced-complexity climate 139 

models (RCMs) that simulate behavior of the Earth system using a smaller number of equations.  140 

RCMs like MAGICC59 and FaIR60,61 have long been part of the consensus methods used in 141 

Intergovernmental Panel on Climate Change (IPCC) assessment reports62 for purposes like simulating 142 

mitigation pathways63. More recently, RCMs have been applied to source attribution, for tasks such as 143 

simulating country-level contributions to global mean temperature change64,65. RCMs are zero-144 

dimensional, lacking spatial information. But peer-reviewed methods like pattern scaling66–68 can address 145 

this shortcoming, providing robust statistical relationships between global and local climates that allow 146 

scientists to draw maps of local temperature change based on RCM output69. Together, RCMs and pattern 147 

scaling link the contributions of individual emitters to local temperature changes in an efficient, 148 

transparent, and reproducible manner57,64,65. 149 

Yet local climate changes do not inevitably imply particularized injuries. To connect individual 150 

emitters to impacts, researchers must quantify the economic or social effects of local climate changes. 151 

Enter the second major advance: more robust quantifications of the socioeconomic impacts of climate 152 

change70. Metrics like the “fraction of attributable risk” that Allen posited are not always suitable for 153 

quantifying the influence of climate change on human impacts45,71–73, though they have been applied to 154 

impacts like rainfall losses74. Nonlinearities associated with the impacts of extreme events mean that more 155 

complex and tailored approaches are necessary to connect GHG emissions to socioeconomic losses. For 156 

example, Strauss et al.75 use hydrodynamic modeling combined with property damage estimates to 157 

quantify the anthropogenic contribution to damages from Hurricane Sandy in New York, an example of 158 

an emerging field of research that combines event attribution results with damage estimates. To enable a 159 

more generalizable framework, we draw on recent peer-reviewed work that uses econometrics to infer 160 

causal relationships between climate hazards and human outcomes like income loss70. For example, 161 

researchers have used empirical methods to show that climate extremes reduce agricultural yields76, 162 

increase human mortality77,78, and depress economic growth79–81. In the attribution context, these causal 163 

relationships have been applied to quantify the historical costs of climate-driven flooding82, crop losses83, 164 

and reduced global economic output from increases in average84 and extreme85 temperatures.  165 

Here we show that emissions directly traceable to carbon majors have increased heat wave 166 

intensity globally, and that such additional heat wave intensity has caused quantifiable income losses for 167 

people in subnational regions around the world.  168 

 169 

Heat wave damage from carbon majors  170 
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 The oil, coal, and gas extracted by fossil fuel firms have produced substantial emissions of carbon 171 

dioxide and methane over the last 100 years (Fig. 1a). Between 1920 and 2020, Saudi Aramco, Chevron, 172 

and ExxonMobil produced an average of 200, 138, and 131 MtC yr-1 in CO2 emissions, respectively51. 173 

Fig. 1a illustrates data since 1920 for comparison, but our analysis uses all available firm-level data 174 

(Table S1).  175 

 To link these firms to specific impacts from their emissions, we leverage a three-step peer-176 

reviewed end-to-end attribution method64 centered on extreme heat (Supplementary Material). The goal of 177 

this framework is to construct a “counterfactual” world in which a firm’s contribution to local extreme 178 

heat change is isolated and removed. We first use the FaIR RCM86 to translate firms’ emissions into 179 

GMST changes (Fig. 1b); next, we apply pattern scaling68 to calculate resulting subnational changes in 180 

extreme heat, defined here as the temperature of the five hottest days in each year, or “Tx5d” (Fig. 1c); 181 

lastly, we apply an empirical damage function to calculate income changes due to these extreme heat 182 

changes85 (Fig. 1d). We compare heat-driven economic damages between the historical and 183 

counterfactual worlds, with the difference between them corresponding to the firm’s contribution to 184 

damages. At all stages, we propagate uncertainties to ensure our findings are robust. We also hold 185 

constant non-climate factors in our counterfactuals; for example, we do not consider how removing firms’ 186 

emissions could have changed the global trade in oil. Our analysis centers only the temperature effects of 187 

the emissions produced by carbon majors. 188 

We first simulate historical GMST change using total emissions with FaIR v2.1.0 over 1000 189 

times, sampling FaIR’s parametric uncertainty, providing a distribution against which we compare our 190 

counterfactual leave-one-out simulations. For the latter, we re-simulate GMST change, subtracting each 191 

firm’s CO2 and CH4 emissions from global emissions. The difference between the observed and each 192 

firm’s counterfactual simulation represents the GMST change attributable to that firm (Fig. 1b), revealing 193 

that, for example, Chevron is responsible for ~0.024 °C of the more than 1 °C warming in 2020. We then 194 

translate these FaIR-based GMST change time series into spatiotemporal patterns of Tx5d change using 195 

pattern scaling coefficients estimated from 80 Earth system model simulations, showing that, for example, 196 

ExxonMobil is responsible for a 0.036 °C increase in average Tx5d values over 1991-2020 (Fig. 1c). 197 

 Finally, we use an empirically derived damage function that generalizes the relationship between 198 

extreme heat intensity and economic growth85 to estimate the consequences of firm-driven Tx5d changes 199 

(Fig. 1d). This relationship varies as a function of regional average temperature: warm tropical regions 200 

lose more than 1 percentage point (p.p.) in economic growth for each 1 °C increase in the intensity of the 201 

hottest five days in each year, whereas temperate regions do not experience large effects85 (Fig. 1d).  202 

We calculate losses in both the historical and leave-one-out simulations 10,000 times for each 203 

region using a Monte Carlo approach (Supplementary Material), taking their difference to provide losses 204 
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attributable to the emissions from each carbon major. If this difference is statistically significant (p < 205 

0.05) given the uncertainty from the FaIR simulations, pattern scaling, and damage function estimates, the 206 

firm has made significant and quantifiable “but for” contributions to economic losses (Supplementary 207 

Material). Because changes in annual mean temperature shape the impacts of extreme heat, we also 208 

pattern-scale regional annual mean temperature. Our final calculations incorporate both changes in Tx5d 209 

itself as well as changes in the average temperatures that moderate the effect of Tx5d85. We also account 210 

for the economic rebound shown in previous work85, whereby the effect of extreme heat is recovered after 211 

2-3 years, meaning we do not assume permanent growth impacts of extreme heat. 212 

 The global economy would be $27 trillion richer were it not for the extreme heat caused by the 213 

emissions from the 100 carbon majors considered here (Fig. 2). Gazprom is responsible for more than $1 214 

trillion in global economic losses from intensifying extreme heat (2020-equivalent $US), and Saudi 215 

Aramco is responsible for more than $900 billion. The contributions from these two state-owned 216 

enterprises are due to their recent and rapid contributions to emissions (Fig. 1a), even though they did not 217 

make large contributions to temperature change earlier in the 20th century. Chevron, ExxonMobil, and BP 218 

have caused $479 billion, $364 billion, and $28 billion in losses, respectively (Fig. 2a). Investor-owned 219 

companies (e.g., Chevron, ExxonMobil) are collectively responsible for $13.7T in losses, while state-220 

owned enterprises (e.g., Saudi Aramco, Gazprom) are responsible for $13.2T. Ranges in damage 221 

estimates can be large, due to the convolution of carbon cycle and climate uncertainties in the FaIR 222 

simulations and parametric uncertainties in the pattern scaling and damage function. Yet in all cases, the 223 

99% range for each of the five main firms does not include zero (Fig. 2a), making it virtually certain that 224 

each has contributed to large global heat-driven losses.  225 

 We use a Kolmogorov-Smirnov test to assess the statistical significance of each firm’s effects in 226 

each region and year64 (Supplementary Material). Consistent with scientific practice, we use an alpha 227 

threshold of 0.05 (i.e., the conventional significance standard of 95%, or p < 0.05). This test explains why 228 

Saudi Aramco’s total damages are lower than Gazprom’s, despite its greater emissions: its contributions 229 

to GMST change are more uncertain (Fig. 1b) and therefore fewer of its regional damages are statistically 230 

significant. Yet the significance threshold of 95% is more restrictive than the “more likely than not” 231 

threshold for evidence in civil cases, which corresponds to an alpha of 0.537. To align our analysis with 232 

this legal standard, we re-calculate attributable losses with significance defined as p < 0.5 (red lines in 233 

Fig. 2a). A “more likely than not” threshold raises the contributions of all firms. Most strikingly, it raises 234 

the damages from BP’s emissions by two orders of magnitude, from $27B to $1.1T. On the other hand, it 235 

does not change results for groups of emitters (Fig. 2b), as collective contributions are large enough to be 236 

significant even under a restrictive standard. These results demonstrate that evidentiary standards can 237 
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influence attributed losses and that applying scientific standards may underestimate the damage for which 238 

actors could be held liable.  239 

 Losses can also be assessed at finer, more legally relevant regional scale, revealing latent 240 

inequities in the causes and consequences of global warming (Fig. 2c). Together, extreme heat from the 241 

five highest-emitting firms (Fig. 2a) has driven annual GDP per capita reductions exceeding 1% across 242 

much of the tropics, particularly in South America, Africa, and Southeast Asia. In contrast, the United 243 

States and Europe—where Gazprom, Chevron, ExxonMobil, and BP are headquartered—have 244 

experienced milder costs from extreme heat.  245 

 Our approach illustrates a cumulative framing of end-to-end attribution, noting that an emitter’s 246 

impact can encompass multiple events and years. However, much of climate attribution and liability is 247 

focused on exceptional singular events, like the 2021 Pacific Northwest heat wave87. End-to-end 248 

attribution should therefore be able to account for individual extreme events in addition to cumulative 249 

exposure. As a proof of concept, we show the contributions of carbon majors to four historic heat waves: 250 

India in 1998 (Fig. 3a, e), France in 2003 (Fig. 3b, f), Russia in 2010 (Fig. 3c, g), and the continental U.S. 251 

in 2012 (Fig. 3d, h). While each heat wave has been studied extensively (e.g., refs.6,8,9,83,88), the 252 

contributions of carbon majors have not yet been quantified. Together, the top five firms increased the 253 

intensity of the five hottest days corresponding to those events by 0.08 °C, 0.11 °C, 0.27 °C, and 0.09 °C, 254 

respectively (Fig. 3a-d), and thus can be tied to losses from those events (Fig. 3e-h). For example, 255 

Chevron’s emissions are responsible for $1.2B, $1.8B, $1.2B, and $7.2B in losses from the 1998 Indian, 256 

2003 French, 2010 Russian, and 2012 American events, respectively. Relaxing the statistical significance 257 

threshold increases attributable damages for these events by factor of four on average (Fig. 3e-h, red 258 

bars). Single-event source attribution also illustrates how firms can be more or less culpable for different 259 

events: Chevron and ExxonMobil are linked to losses in India in 1998 at the 95% confidence level due to 260 

their high 20th-century emissions, while Saudi Aramco, Gazprom, and BP cannot, unless the threshold is 261 

relaxed to the “more likely than not” standard.  262 

Collectively, these results illustrate, for the first time, the global economic toll that individual 263 

fossil fuel firms have produced due to the extreme heat caused by their emissions of carbon dioxide and 264 

methane. The veil of plausible deniability that carbon majors have hid behind for decades is threadbare. 265 

 266 

Clarifying who is responsible 267 

 How could end-to-end attribution analyses like ours be used? Each case will differ and depend on 268 

the motivation of the litigants and their climate context. As presented in Figs. 2 and 3, science can clarify 269 

“but for” causation at various scales across a class of hazards, like heat waves, or for a particular event, 270 

like the 1998 Indian heat wave. But it is also essential to clarify who is potentially liable. There are many 271 
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emitters, and affected communities may want to know who is most liable for impacts they endure—whom 272 

do they name as defendant? A nation? A firm? A collective? A sector? Here, too, science can help clarify 273 

the legal landscape.  274 

 To date, attorneys and litigants have often named defendants as part of the initial legal process, 275 

under the assumption that knowing a defendant’s emissions is sufficient to make a claim. Our analysis 276 

makes clear, however, that what matters is not simply the magnitude of the emissions, but also the 277 

timescale over which they were released and the impact under consideration. Nonlinearities at each step 278 

from emissions to impacts imply that claimants could be missing or erroneously including emitters in 279 

their claim. And yet indexing through all possible emitters to attribute each of their contributions could be 280 

costly. Legal work is expensive and time-consuming, and the need to retain experts could be a crucial 281 

barrier to the low-income or under-resourced communities who have the greatest claims for restitution.  282 

 Science can help claimants assess potential defendants in a transparent and low-cost way. As an 283 

example, we present a strategy for assessing who is responsible for cumulative losses from extreme heat 284 

(Fig. 4). In this instance, the analysis asks: “what percentage of global emissions must emitters have 285 

released to have caused detectable harm from extreme heat?” Our approach here is straightforward: we 286 

repeat our leave-one-out simulations using idealized percent contributions to total 1850-2020 CO2 and 287 

CH4 emissions, rather than the emissions of any particular firm. Such an approach is actor- and scale-288 

agnostic, meaning it simply presents the minimum contribution required over some time period and some 289 

spatial scale to have made a detectable impact. Global losses from extreme heat scale quasi-linearly with 290 

emissions contributions (Fig. 4a). While emissions contributions below 1.5% do not have statistically 291 

significant impacts, any contribution above 1.5% can be tied to heat-driven losses at the 95% confidence 292 

level. At the more-likely-than-not level, this threshold falls to 0.5% (Fig. 4a, red line). Above 3%, the 293 

relationship scales such that each additional percent contribution to total 1850-2020 emissions generates 294 

an additional $815 billion in global economic losses from extreme heat.  295 

  Such a generalized approach enables litigants to consider emitters at various scales quickly: any 296 

individual or group of emitters can be placed in this contribution-damages space to rapidly assess whether 297 

their contributions have caused detectable harm, flexibly considering different significance levels. For 298 

example, the general relationship between contributions and heat wave damages can be used to link the 299 

top five firms (Fig. 4a, orange) or all firms (Fig. 4a, blue) to losses, based on collective emissions. These 300 

losses depend on the time period over which the emissions are counted (Fig. 4b), demonstrating key 301 

choices that must be made by policymakers, litigants, and courts. If one’s accounting begins in 1990, 302 

around the development of the scientific consensus on climate change49, heat wave losses attributable to 303 

an actor contributing 5% of global emissions tally $2.1 trillion, contrasting with the $4.1 trillion when 304 

counting from 1850. Yet fossil fuel firms have accurately predicted climate change since the 1970s89 and 305 
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have since used their power and profit to cast doubt on the relationship between fossil fuels and 306 

warming90. If we use the 1977 date of the first reported successful projection of global warming by 307 

ExxonMobil89, heat wave losses attributable to an actor contributing 5% of global emissions come to $3 308 

trillion. These losses are all large and statistically significant, but vary by ~50% across start dates. 309 

 Our emitter-agnostic approach can be extended to more legally relevant scales (Fig. 4c) or 310 

applied to specific heat wave events, providing a basis from which courts can assess the contributions of 311 

actors of interest: if an actor has contributed more than the minimum level required for a significant 312 

contribution to losses, there is evidence for causal linkages between that actor’s emissions and resulting 313 

injuries. This number is less than 3% in many tropical regions but exceeds 5% at higher latitudes, 314 

reflecting the unequal spatial structure of the causes and effects of extreme heat (Fig. 2c, top). Relaxing 315 

the significance threshold lowers the minimum contribution to less than 2% in tropical regions (Fig. 2c, 316 

bottom). We can also assess the minimum contribution for detectable harm for the heat events presented 317 

in Fig. 3. For example, we find that any actor contributing at least 2%, 2%, 1.5%, and 1.5% of 1850-2020 318 

emissions can be linked to losses from the 1998, 2003, 2010, and 2012 heat waves, respectively.  319 

 320 

Remaining work and ways forward 321 

 By clarifying “what” damages and “who” is responsible, our attribution frameworks have 322 

flexibility and applicability to many contexts. Extreme heat is but one climate impact, and so as science 323 

develops and new impacts are revealed, such as extreme rainfall91 or El Niño92, these costs could be 324 

incorporated into a fuller accounting of climate damages attributable to emitters. Given the flexible, open-325 

source nature of RCMs and the maintenance of preexisting pattern scaling libraries66, such damage 326 

estimates can be easily ported into our framework. For example, Strauss et al.75 attribute anthropogenic 327 

damages from sea level rise using a semi-empirical relationship between GMST change and local sea 328 

level rise. Their attribution analyses could therefore be directly linked to our RCM simulations of GMST 329 

contributions, demonstrating the modularity of our framework. Finally, performing near-real-time end-to-330 

end attribution in a coordinated fashion following events would allow communities to understand the 331 

contributions of individual actors to the losses they suffer.  332 

 Scientific enterprises like the World Weather Attribution16, which has helped make event 333 

attribution a standard practice for science and the public, could be extended to include end-to-end 334 

attribution in their workflow, or could be a model for a new scientific body centered on assessing “but 335 

for” causation in climate impacts. Recent calls to operationalize extreme event attribution for loss and 336 

damage debates have been motivated by the consensus methods that have been developed for event 337 

attribution19. And just as event attribution has moved from the fringe to the mainstream over the last 338 

twenty years, the same could be true of source attribution. A standing scientific body could be an essential 339 
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resource for courts and citizens, providing tailored end-to-end attribution analyses and expert testimony, 340 

responsibly informing the coming wave of litigation to ensure claims use the best available science.   341 

 The validity of the scientific case for climate liability does not mean that claims will succeed in 342 

court. Essential questions remain, such as the period over which emissions should be counted. That fossil 343 

fuel firms have predicted climate change and its consequences for decades implies a potential “duty of 344 

care” violation, meaning that those firms could be liable for emissions occurring before the consensus on 345 

climate change emerged93. Research using archival methods94, computational frame analysis95, and 346 

interviews96 has documented the disconnect between the internal and public communications of fossil fuel 347 

firms. Advances in this area could add credibility to climate liability cases. Ultimately, however, 348 

accounting and framing choices reside beyond the scope of science—they must be made by legal teams 349 

and decided by judges and juries. Other legal barriers include legislation like the Clean Air Act, which 350 

may displace federal common-law claims97, or courts’ perception that these cases inappropriately 351 

intervene in policymaking98. 352 

Moreover, despite the harm arising from extreme heat, fossil fuels have also produced immense 353 

prosperity over the last century. Our results do not reflect the benefits to economic growth that fossil-354 

fueled energy has provided and for which these firms have been handsomely paid. Courts may need to 355 

consider how the benefits of energy use are balanced against its externalities and the potential duty of care 356 

these firms have to the public93. Climate damages are a negative externality from fossil fuels not reflected 357 

in the current value of these firms. This disconnect is particularly strong given that these externalities 358 

have fallen most severely on the poorest people across the globe—those who have benefited least from 359 

fossil fuels or have been exploited for its extraction99. More broadly, just as the benefits of a medication 360 

do not absolve a manufacturer who fails to warn its customers about side effects, we do not believe that 361 

the benefits of fossil fuel use should absolve carbon majors of liability for these devastating externalities2, 362 

particularly when they have misled the public about the dangers of their products94.  363 

As climate disasters accumulate, courts will see more and more climate cases. Formalizing 364 

communication and education between the scientific and judicial communities is vital, ensuring that 365 

science is useful and that courts recognize its limits. Alongside these efforts, new legal theories and the 366 

urgent press of climate disaster could spur courts to embrace climate liability claims100. The next twenty 367 

years will bring greater clarity on these remaining questions. Here we provide an essential start: the 368 

development of rigorous, flexible, transparent, and widely applicable end-to-end attribution frameworks. 369 

In his prescience, Allen posited this moment twenty years ago, considering the extent to which 370 

scientific limitations represent an obstacle to climate liability. While legal and policy barriers remain, 371 

science is no longer an obstacle to climate liability claims.  372 

 373 
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 396 
Fig. 1 | Carbon majors have individually contributed to extreme heat intensification. A) CO2 397 

emissions in megatons of carbon (MtC) per year from the five top-emitting fossil fuel firms (“carbon 398 

majors”). B) Changes in global mean temperature caused by the cumulative emissions of each carbon 399 

major. Vertical axis denotes the magnitude of global warming due to each firm in each year. Solid line 400 

shows the mean from 1001 FaIR simulations, each run with a different calibrated parameter set; shading 401 

shows the 90% range across the FaIR ensemble. C) Changes in 1991-2020 global average subnational 402 

Tx5d (temperature of the five hottest days in each year) from each carbon major, estimated by combining 403 

the FaIR simulations with CMIP6-based pattern scaling. Solid line shows the mean and shading shows 404 

the IPCC confidence ranges arising from interacting FaIR and pattern scaling uncertainties. D) Marginal 405 

economic effect of increases in Tx5d on economic growth in percentage points per degree Celsius (p.p. 406 

°C-1) across a range of regional annual mean temperature values. Solid line shows the mean estimate and 407 

shading shows the 90% confidence interval, based on the observed relationship between Tx5d and 408 

economic growth. Positive values indicate that cool regions benefit from higher temperatures whereas 409 

negative indicate that warm regions suffer from higher temperatures.  410 
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 411 
Fig. 2 | Carbon majors have caused cumulative economic losses from extreme heat irrespective of 412 

significance standard. A) Cumulative global heat-driven economic losses linked to the five top-emitting 413 

fossil fuel firms over 1991-2020. Black line shows the mean across 10,000 Monte Carlo simulations 414 

convolving all sources of uncertainty and gray shading denotes the IPCC likely (66%), very likely (90%), 415 

and virtually certain (99%) ranges. The main analysis uses a significance threshold of p < 0.05; red dots 416 

and lines show the average losses for each firm if a threshold of p < 0.5 is used, corresponding to a legal 417 

standard of “more likely than not.” B) Heat-driven economic losses linked to groups of carbon majors: all, 418 

investor-owned companies (IOCs), state-owned enterprises (SOEs), and the top five shown in A. Red dots 419 

correspond to a significance threshold of p < 0.5. In A and B, bottom inset text denotes the average losses 420 

linked to each actor or group using the p < 0.05 level. C) Average annual GDP per capita (GDPpc) 421 

change in subnational regions due to heat extremes driven by the combined emissions of the top five 422 

firms shown in A, evaluated at the 95% confidence level. White regions are those for which we do not 423 

have continuous GDPpc data over 1991-2020. Map was generated using cartopy v0.17.0 and regional 424 

borders come from the Database of Global Administrative Areas. 425 

No
data
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 426 
Fig. 3 | Carbon majors have caused losses from individual extreme heat events. A-D) Average 427 

change in regional Tx5d values due to the emissions of the five top-emitting carbon majors in 1998 (A), 428 

2003 (B), 2010 (C), and 2012 (D). E-H) Economic losses due to Tx5d intensification in India in 1998 (E), 429 

France in 2003 (F), Russia in 2010 (G), and the continental U.S. in 2012 (H) due to the emissions of 430 

carbon majors. In E through H, dot shows the average estimate, lines span the 90% (very likely) range, 431 

and inset text denotes the minimum percent contribution to 1850-2020 emissions that can be statistically 432 

tied to losses from each event using a p < 0.05 threshold. Red lines in E through H denote the 433 

contributions of each carbon major when p < 0.5 is used as the significance threshold rather than p < 0.05. 434 

Maps were generated using cartopy v0.17.0 and regional borders come from the Database of Global 435 

Administrative Areas.   436 
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 437 
Fig. 4 | The emissions contributions necessary to attribute cumulative economic losses from extreme 438 

heat depend on evidentiary standards and the time period considered. A) Attributable global heat-439 

driven economic losses over 1991-2020 as a function of the percent contribution to global CO2 and CH4 440 

emissions over the 1850-2020 period. B) Losses attributable to a 5% contribution to global emissions, 441 

when that contribution is assessed starting in 1850 (as in A), 1977, or 1990, and ending in 2020 in all 442 

cases. In (A) and (B), black line, dots, and shading correspond to a p < 0.05 threshold whereas red line or 443 

dots correspond to a p < 0.5 threshold. C) Minimum statistically significant contribution to economic 444 

damages in each subnational region corresponding to thresholds of p < 0.05 (top) and p < 0.5 (bottom). 445 

Maps were generated using cartopy v0.17.0 and regional borders come from the Database of Global 446 

Administrative Areas.   447 
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SUPPLEMENTARY MATERIAL 

 Carbon majors and the scientific case for climate liability 

Christopher W. Callahan & Justin S. Mankin 

 

Supplementary Methods 

Our approach provides an open-source, transparent, rigorous, modular, and extendable end-to-end 

attribution that isolates and quantifies particular damages from climate hazard(s) that can be traced back 

to particular emissions, building on our earlier work in this area1. 

Here, we present the damage attributable to enhanced extreme heat due to the emissions of 

particular actors. We measure this damage as subnational GDP per capita loss. We emphasize that this is 

not the only way to measure the impacts of extreme heat, nor does such an assessment represent the 

totality of climate damages attributable to any one emitter. As such, our estimates of damages attributable 

to emitters should be considered lower bounds, as they do not include other hazards and damages that 

could be traced back to these emissions, nor does income loss represent the total damage associated with 

extreme heat. 

 Mechanically, our end-to-end attribution integrates model experiments with three steps: (1) 

emissions to warming; (2) warming to hazards; and (3) hazards to damages. For the first step, we use a 

reduced-complexity climate model, which translates emissions into global temperature change, 

reconciling the carbon cycle and climate response uncertainty (see Step 1: FaIR simulations). For the 

second step, we use a statistical model that translates global temperature change into local changes in the 

hottest five days of the year (see Step 2: Pattern scaling). For the last step, we use an empirical model that 

estimates the marginal economic damage of the five hottest days of the year (see Step 3: Damage 

function). Different sets of emissions data could be included in Step 1, other hazard models could be 

ported in at Step 2, and other damage models could be used in Step 3, suggesting the flexibility of the 

framework.  

 

Step 1: FaIR simulations 

 We use the Finite amplitude Impulse Response (FaIR) emissions-driven reduced-complexity 

climate model (RCM) to quantify the contributions of individual emitters to global mean surface 

temperature change. FaIR takes input time series of greenhouse gas emissions and natural climate 

forcings, simulates the carbon cycle and radiative forcing response, and calculates resulting warming, 

providing an output time series of global mean surface air temperature (GMST). All FaIR simulations are 

run from 1750 to 2020. 



 For each firm, our analysis requires comparing three experiments: in the first experiment, we run 

FaIR in a “natural” scenario, with only naturally occurring historical forcings, like solar variations and 

volcanic eruptions, preserved. This experiment calculates the time series of GMST in a counterfactual 

world with no human GHG emissions. In the second experiment, we run FaIR in a “historical” scenario, 

inputting both total historical human-caused emissions as well as the natural forcings to calculate the 

GMST we have experienced from observed historical forcing. The difference between the “historical” and 

“natural” FaIR simulations provides a time series of the change in GMST attributable to historical 

human-caused emissions and allows us to validate the skill of our simulations. Our simulations are 

skillful, reproducing the experimental results from the Detection and Attribution Model Intercomparison 

Project2 (DAMIP) run with the fully coupled Earth System Models participating in the sixth phase of the 

Coupled Model Intercomparison Project3 (CMIP6). The IPCC best estimate of human-induced warming 

over 2010-2019 relative to 1850-1900 is 1.07 °C, with a likely (66%) range of 0.8 °C – 1.3 °C (ref.3). The 

results from our FaIR simulations are consistent with this estimate, with an average warming in 2010-

2019 relative to 1850-1900 of 1.05 °C and a 66% range of 0.89 °C – 1.23 °C.  

 Our third experiment is performed for each emitter separately. This experiment has the same 

protocol as that for the “historical,” but this time we remove the emissions from a single firm from total 

historical emissions. This is called a “leave-one-out” experiment; it provides the counterfactual time 

series of GMST where the chosen firm did not emit. The difference between the time series of “historical” 

and “leave-one-out” GMST provides a time series of the change in GMST attributable to a single emitter. 

 A “leave-one-out” experimental design does not consider socioeconomic consequences of 

counterfactual emissions, only thermodynamic ones. As such, our counterfactual approach is agnostic 

about whether a “leave-one-out” framing implies that the fossil fuel production itself never took place 

(with opaque and unpredictable market and production implications), or whether it is analogous to a 

scenario where a firm instead took steps to mitigate or remove the emissions associated with their fossil 

fuel production.  

 Each firm’s emissions are time series of carbon dioxide and methane emissions—representing 

Scope 1 and Scope 3 emissions from fossil fuel production—drawn from data from Heede4; we use all 

available years of emissions data for each firm. Not all firms have data spanning the same number of 

years as companies were incorporated at different times, but we use all available emissions data to avoid 

artificially constraining our analysis. Table S1 shows the years over which emissions data are available 

for the five top-emitting firms in our data.  

 To sample carbon cycle and radiative forcing uncertainties, we perform each of the above FaIR 

experiments 1001 times, providing a large perturbed-parameter ensemble for each experiment. The 1001 

parameter combinations were developed as part of the IPCC sixth assessment report5. Notably, our 1001-



member FaIR parameters are a subset of a larger parameter set of 1.5 million, which was then constrained 

to be consistent with fully coupled CMIP6 Earth System Models. We therefore run 1001 simulations for 

the “natural,” “historical,” and each firm-level “leave-one-out” scenarios, sampling each parameter set for 

each firm. These simulations provide a distribution of GMST changes attributable to each firm for each 

year, where the range in values is attributable to uncertainties in the carbon cycle and the response of 

warming to forcing. These parameter sets were downloaded on September 13, 2023, with further 

information available at the following URL: 

https://docs.fairmodel.net/en/latest/examples/calibrated_constrained_ensemble.html 

 

Step 2: Pattern scaling 

 The scale of our damages analysis is the subnational region, equivalent to states in the United 

States or provinces in Canada. This is the scale at which heat waves have been found to affect economic 

growth6 (in contrast to the country-level approach of previous studies7,8, a finer spatial scale is necessary 

to account for the effect of heat waves). Following previous work, heat waves are defined here as the five 

hottest days in each year (denoted “Tx5d”), though other heat metrics could be used.  

 In order to quantify the effects of carbon majors’ emissions on local extreme heat, it is necessary 

to link changes in GMST provided by the FaIR simulations to regional changes in Tx5d. Motivated by the 

strong linear relationship between GMST change and local extreme heat9, we use the widely-used pattern 

scaling method to calculate changes in Tx5d in each region as a linear function of changes in GMST 

change. To do this, we leverage the “hist” and “hist-nat” experiments conducted as part of the DAMIP 

protocol for CMIP6, which are the fully coupled analogues to our “historical” and “natural” FaIR 

experiments outlined above. For each participating model and each experiment, we calculate regional 

Tx5d. Next, we take the difference between the “hist” and “hist-nat” experiments in both GMST and 

regional Tx5d over the 1991-2020 period to calculate anthropogenic changes in those quantities. We then 

linearly regress the time series of anthropogenic Tx5d change onto the time series of anthropogenic 

GMST change for each region to yield a pattern scaling coefficient that represents the marginal sensitivity 

of local Tx5d change to GMST change in units of “degree of regional Tx5d change per degree of GMST 

change.” Multiplying these coefficients with the firm-level sets of FaIR simulations that provide the 

GMST change attributable to each emitter yields the Tx5d change due to each carbon major in each 

subnational region (Fig. 1c). We use 1991-2020 as the time period of this analysis to match the time 

period of the damages analysis.  

 We perform this local pattern scaling regression separately for each of 80 CMIP6 climate model 

simulations, specifically those which have hist and hist-nat simulations available for daily high surface air 

temperature (“tasmax”). For the CMIP6, only 8 distinct models are available, but we use as many 



ensemble members for each model as possible. This choice means that some models are overrepresented 

in this ensemble but ensures that we are sampling pattern scaling uncertainty due to both model structure 

and internal climate variability. When we perform our final Monte Carlo uncertainty assessment (see 

Uncertainty and statistical significance), we adjust the model sampling probabilities so that models with 

fewer realizations are equally likely to be sampled as models with more6.  

 

Step 3: Damage function 

We use a damage function that relates changes in local Tx5d to changes in GDP per capita growth 

(“economic growth”) in subnational regions. This function was derived following peer-reviewed methods 

of ref.6, using a panel regression of observed Tx5d and observed GDP per capita growth in a global 

sample of regions over 1979-2016, isolating the causal effect of year-to-year changes in extreme heat 

from other geographic or time-trending correlates. The estimated effects of Tx5d on economic growth are 

spatially heterogeneous, with negative effects of extreme heat in warm regions (regions with annual mean 

temperature above ~14 °C), but negligible or positive effects in cool regions. The disproportionate 

negative effect of marginal changes in Tx5d in warm tropical regions could occur due to both their 

underlying warmth, which may place them closer to physiological thresholds for human health or 

agriculture, as well as the lower income in tropical regions, which may make them more economically 

vulnerable to climate stress. Uncertainty in these subnational damage function coefficients is estimated by 

bootstrap resampling the regression, producing a distribution of 1000 coefficients that reflect sampling 

uncertainty in our estimates.  

To assess heat-driven damage attributable to individual emitters, we integrate the three steps 

outlined above, calculating economic changes in the “historical” and “leave-one-out” scenarios for each 

firm, relative to the “natural” scenario which only includes solar and volcanic forcing. We do the 

following: 

1) First, we calculate the change in each region’s Tx5d values due to the difference in Tx5d 

between the pattern-scaled FaIR “historical” (or “leave-one-out”) simulation and the pattern-

scaled FaIR “natural” simulation. This difference is then subtracted from the observed, real-

world time series of Tx5d for each region, providing counterfactual subnational annual-scale 

time series of Tx5d. This common “delta method” ensures that the Tx5d differences are 

benchmarked to the observed climate, both to bias-correct the model predictions and to 

impute realistic timing to interannual variability.  

2) The difference between observed and counterfactual Tx5d is then multiplied by the damage 

function coefficients to calculate a change in each region’s economic growth, due to the 

change in Tx5d between the “natural” and “historical” or “leave-one-out” experiments. 



3) We then add this difference in economic growth to observed economic growth. This provides 

a counterfactual trajectory of economic growth consistent with the included emissions. 

Higher counterfactual economic growth values than those observed in the real world implies 

damages from emitter-driven Tx5d changes—i.e., a region would have grown faster but for 

the effect of the extreme heat attributable to the included emissions.  

4) We then put these economic changes in dollar terms by taking these counterfactual economic 

growth time series from each emitter and re-integrating each region’s GDP per capita time 

series. Further details on this procedure are available in Callahan and Mankin6 and 

Diffenbaugh and Burke10. We now have, for each region, a time series of per capita GDP 

damages in the historical world and a time series of per capita GDP damages in a world with 

one emitter removed.  

5) Finally, we take the difference between the historical damage estimate and the leave-one-out 

damage estimate to calculate the contributions of individual firms. Further details on this 

procedure are available in Callahan and Mankin1. 

The effect of extreme heat on economic growth is not permanent. In previous work6, we observed 

a rebound effect whereby economic growth accelerates in the years following heat waves—for example, 

as crops are resown or people return to work. This effect appears to last three years. Neglecting such a 

rebound effect could lead to overestimates of the effect of heat waves on long-term growth. We therefore 

account for this recovery in our damage estimates, allowing Tx5d changes to affect both contemporary 

and future economic growth such that no single heat wave has a permanent effect. Additionally, because 

changes in annual mean temperature moderate the effect of Tx5d change, we perform a similar pattern 

scaling analysis with regional annual mean temperature. Following previous work, the final damages 

calculations incorporate both changes in Tx5d itself as well as changes in the underlying annual mean 

temperature values that moderate the effect of Tx5d6. 

 

Predicting regional income 

 Our analysis requires continuous GDP per capita time series order to integrate counterfactual 

economic growth and calculate counterfactual income. Many regions around the world, especially those 

in the poorest and warmest areas of the tropics—those that are most strongly affected by extreme heat—

do not have such subnational data available, making it difficult to assess the impacts of climate change in 

those regions. To fill this gap, we extend the regional GDP per capita prediction procedure outlined in 

Callahan and Mankin6 to predict subnational GDP per capita from 1991-2020. 

 This procedure takes three inputs: country-level GDP per capita (GDPpc) data from the World 

Bank World Development Indicators, gridded nighttime luminosity data from satellites, and subnational 



GDPpc (from the regions where such data is available) from the DOSE dataset collected by Wenz et al.11. 

We estimate a multiple regression model where observed regional GDPpc is regressed on the 

corresponding country’s GDPpc, regional average nighttime luminosity, and their interaction12. (To 

perform this procedure over 1991-2020, we linearly extrapolate regional nightlights beyond their original 

1992-2013 time boundaries.) This regression model skillfully explains variation in regional GDPpc, with 

an R2 of approximately 0.9, and has performed well in out-of-sample cross-validation tests6. We then 

predict regional GDPpc in the regions where it is not available, using the country-level GDPpc and 

nightlights data in these regions. There are some countries where even country-level GDPpc data is not 

continuously available, such as Uzbekistan and Kenya, and in these regions we do not produce regional 

GDPpc data (see, for example, the white regions in Fig. 2).  

 We use the US GDP deflator to correct for inflation and convert each dollar to 2020-equivalent 

dollars. 

 This procedure inherently introduces uncertainty in our final estimates, and we sample this 

uncertainty in two ways following Callahan and Mankin6. First, we bootstrap the multiple regression 

model 250 times, resampling by country with replacement to account for within-country autocorrelation 

in growth. Second, in each bootstrap iteration, we add random noise to the predictions with amplitude 

equal to the standard deviation of the estimation model’s residuals. This procedure ensures that the 

uncertainty from this prediction procedure is reflected in our final damage estimates.  

 We emphasize that we do not use these GDPpc reconstructions in the original regression 

estimates that produce the damage function, only in the process of calculating absolute GDPpc losses 

from changes in economic growth.  

 

Event-specific estimates 

To quantify the influence of carbon majors on damages from specific events, we use a similar 

method as in our main analysis. The key difference is that we only calculate the damages from the change 

in Tx5d and average temperature in the year of the event. In practice, this means we set the Tx5d and 

average temperature values in the leave-one-out simulation equal to the observed values in all years, 

except the year of the event. For example, we calculate damages for India in 1998 by setting the historical 

and leave-one-out Tx5d and temperature values to be exactly the same as the observed values, except for 

in 1998. We then repeat our damage calculation, with damages only being produced by the climate 

change in 1998 and not any other year. We also note that these heat waves happen to coincide with the 

Tx5d in each case we present. We would not always expect that to be the case, as damaging heat waves 

may not always include the five hottest days of the year. In such cases, other heat metrics or approaches 

may be appropriate. 



As described above, heat waves produce an economic rebound in the years following the event. 

As such, we continue to account for the economic recovery in these single-event estimates by allowing 

Tx5d changes to affect growth in the year of the event as well as the two years following it. Previous 

work found that heat waves affect growth in both the year of the event as well as two years afterwards, 

before regions “catch up” to their previous growth rate in the third year following the event. Critically, 

this does not imply that these events have no effect on economies; it simply means that that effect is 

transient rather than permanently accumulating. Further discussion of this issue can be found in Callahan 

and Mankin6 

When we present country-level damage estimates for these individual events, we sum damages 

across all regions in the chosen country for that year and the 2 years following. For example, for India in 

1998, the damage estimates presented in Fig. 3 represent losses in 1998, 1999, and 2000, induced by the 

1998 heat wave, before India catches back up to its original economic trajectory in 2001 and damages are 

zero thereafter. For the United States in 2012, we exclude Hawaii and Alaska from this calculation to only 

calculate damages for the contiguous U.S.   

 

Uncertainty and statistical significance 

Our damage calculations reflect uncertainty from the FaIR simulations, pattern scaling, damage 

function estimates, and regional income prediction. To propagate these uncertainties into our final 

estimates, we use a Monte Carlo approach, sampling uncertainty with 10,000 iterations. In each iteration, 

we sample one of the 1001 FaIR simulations, one of the 80 climate model estimates of the pattern scaling 

coefficients (keeping all regional coefficients together from a single climate model), one of the 1000 

damage functions from the bootstrap estimate, and one of the 250 regional GDPpc predictions.  

Our damages analysis involves differencing two estimates: damages with and without a certain 

emitter. Each of these damage estimates has 10,000 values for each region and year. To test whether a 

firm’s effect is statistically significant, we use a Kolmogorov-Smirnov test in each region and year to test 

whether the distributions with and without that firm are statistically distinct. If these two distributions are 

distinct with an alpha of 0.05 (i.e., significance requires p < 0.05), the firm has made statistically 

significant and quantifiable “but for” contributions to economic losses. If a given region and year is not 

significant, it is discarded and not added to a firm’s total damages (e.g., the numbers shown in Fig. 2). 

When we alter our threshold for the test of significance, we simply repeat our analysis with an 

alpha threshold of 0.5 rather than 0.05.  

 

 

 



Supplementary Tables 

 

Firm Name Headquarters  Start Year End Year 

Saudi Aramco Saudi Arabia 1938 2020 

Gazprom Russia 1989 2020 

Chevron United States 1912 2020 

ExxonMobil United States 1884 2020 

BP United Kingdom 1913 2020 

 

Supplementary Table 1: Availability of emissions data for top five firms. This table shows the name 

(first column), country of headquarters (second column), first year of available emissions data (third 

column), and last year of available emissions data (fourth column) for the five top-emitting firms in our 

data. Data is from Heede4. 
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